ACTG 5381: Virologic and Resistance Outcomes After Switch to TLD for Failing 1st or 2nd Line ART Carole L. Wallis¹, **Caitlyn McCarthy**², Catherine Godfrey³, Sarita Shah⁴, Cissy Kityo⁵, Urvi M. Parikh⁶, Gary Maartens⁷, Isaac Tsikhutsu⁸, Fatma Some⁹, Samuel Pierre¹⁰, Yvetot Joseph¹⁰, Charles W. Flexner¹¹, Michael D. Hughes², John W. Mellors⁶, for the ACTG A5381/The Hakim Study team ¹Lancet Laboratories and BARC SA, Johannesburg, South Africa, ²Harvard T.H. Chan School of Public Health, Boston, MA, USA, ³Global Health Security and Diplomacy/PEPFAR, US Department of State, Washington DC, USA, ⁴Emory University, Atlanta, GA, USA, ⁵Joint Clinical Research Centre, Kampala Uganda, ⁶University of Pittsburgh, PA, USA, ⁷University of Cape Town, Cape Town, South Africa, ⁸, Kenya Medical Research Institute/Walter Reed Project Clinical Research Center, Kericho, Kenya, ⁹Moi University Clinical Research Center, Eldoret, Kenya, ¹⁰GHESKIO (Haitian Group for the Study of Kaposi's Sarcoma and Opportunistic Infections), Port-au-Prince, Haiti, ¹¹Johns Hopkins University, Baltimore, MD, USA ## **BACKGROUND** Most countries recommend tenofovir-lamivudine-dolutegravir (TLD) for individuals starting antiretroviral therapy (ART) or switching from suppressive 1st-line NNRTI- or 2nd-line PI-based ART, but national guidelines vary about switching to TLD when not suppressed on ART. #### **METHODS** - Adults and adolescents (>10 years) switching from 1st-line NNRTI-based (Cohort 1) or 2nd-line PI-based (Cohort 2) ART with HIV-1 RNA >1000 c/mL were enrolled in the ACTG A5381 prospective cohort study. - Plasma HIV-1 RNA was measured at study entry and every six months for up to 36 months. For participants with HIV-1 RNA >1000 c/mL at six months, population-based genotyping was performed on the study entry and six month samples. - At the 6-month visit, the proportion with HIV-1 RNA ≤1000 c/mL and the proportion with new DTG resistance mutations were estimated among those still on TLD. Exact 95% confidence intervals (CI) were calculated using the Clopper-Pearson method. - A case-control study (unsuppressed vs. suppressed) evaluated tenofovir diphosphate (TFV-DP) concentrations in dried blood spots. #### **RESULTS** Table 1. Participant Characteristics | | Cohort 1:
switched from
failing 1st-line
NNRTI-based ART
(N=44) | Cohort 2:
switched from
failing 2nd-line
PI-based ART
(N=173) | |--|---|---| | Female sex, n (%) | 34 (77%) | 98 (57%) | | Gender identity, n (%)
Cisgender
Not reported | 43 (98%)
1 (2%) | 163 (94%)
10 (6%) | | Age (years), median (q1, q3) | 33 (24, 41) | 41 (27, 49) | | Country, n (%)
Haiti
Kenya
Malawi
South Africa
Uganda
Zimbabwe | 2 (5%)
19 (43%)
2 (5%)
3 (7%)
15 (34%)
3 (7%) | 80 (46%)
27 (16%)
13 (8%)
9 (5%)
44 (25%)
0 (0%) | | HIV-1 RNA (log ₁₀ c/mL), median (q1, q3) | 4.0 (3.7, 4.6) | 4.2 (3.6, 4.6) | | CD4 count (cells/mm³), median (q1, q3) | 306 (173, 419) | 262 (134, 370) | | Total years on ART, median (q1, q3) | 5.5 (3.1, 9.2) | 5.4 (2.8, 8.9) | Infrequent emergence of DTG mutations and lower TFV-DP concentrations in unsuppressed vs. suppressed after switch to TLD suggest suboptimal viral suppression is due to incomplete adherence. Table 2. Proportion of participants with HIV-1 RNA ≤1000 and ≤200 c/mL at months 6, 12, and 24. | | | Cohort 1:
switched from
failing 1st-line
NNRTI-based ART
(N=44) | | Cohort 2:
switched from
failing 2nd-line
PI-based ART
(N=173) | | |----------------------|-----------|---|----------|---|----------| % | Exact | % | Exact | | | | (n / N on TLD
with RNA results) | 95% CI | (n / N on TLD with RNA results) | 95% CI | | HIV-1 RNA ≤1000 c/mL | 6 months | 88% (37/42) | 74%, 96% | 72% (118/165) | 64%, 78% | | | 12 months | 88% (30/34) | 73%, 97% | 74% (104/140) | 66%, 81% | | | 24 months | 76% (16/21) | 53%, 92% | 70% (45/64) | 58%, 81% | | HIV-1 RNA ≤200 c/mL | 6 months | 83% (35/42) | 69%, 93% | 67% (110/165) | 59%, 74% | | | 12 months | 88% (30/34) | 73%, 97% | 65% (91/140) | 57%, 73% | | | 24 months | 76% (16/21) | 53%, 92% | 61% (39/64) | 48%, 73% | Figure 1. Proportion of participants with HIV-1 RNA ≤1000 c/mL at each study visit. Vertical bars represent exact 95% confidence intervals. **Table 3.** Proportion of participants with HIV-1 RNA >1000 c/mL and new DTG resistance mutations at the 6-month visit. Two participants who switched from failing 2nd-line PI-based ART had new DTG mutations (G118R and R263K). | Cohort 1:
switched from
failing 1st-line
NNRTI-based ART
(N=44) | | Cohort 2:
switched from
failing 2nd-line
PI-based ART | | | | | | |---|---|---|--|---------------------------------|-----------------|---------------------------------|-----------------| | | | | | (N=173) | | | | | | | | | % | | % | | | | | | | (n / N on TLD
with integrase | Exact
95% CI | (n / N on TLD
with integrase | Exact
95% CI | | | | resistance results) | | resistance results) | | | | | 0% (0/42) | 0%, 8% | 1% (2/163) | 0%, 4% | | | | | | | switched fro
failing 1st-lir
NNRTI-based /
(N=44)
%
(n / N on TLD
with integrase
resistance results) | switched from failing 1st-line NNRTI-based ART (N=44) % (n / N on TLD with integrase resistance results) Exact 95% CI | switched from failing 1st-line NNRTI-based ART (N=44) PI-based AR (N=173) % (n / N on TLD with integrase resistance results) switched from failing 2nd-lin PI-based AR (N=173) % (n / N on TLD with integrase resistance results) | | | | | Figure 2. TFV-DP concentrations at the 6-month visit compared between the case and control groups using a Wilcoxon signed rank test. Concentrations below the lower limit of quantification (LLoQ) of the assay (16.6 fmol/3mm punch) were imputed as half of the LLoQ. Boxes represent median (q1, q3). ## CONCLUSIONS - Participants who switched to TLD from failing 1st or 2nd-line ART had improved but suboptimal (<90%) viral suppression that did not improve over time. - Infrequent emergence of DTG mutations and lower TFV-DP concentrations in unsuppressed vs. suppressed participants suggest that incomplete adherence to TLD was the major mechanism for failure to suppress viremia. - Lower suppression rates were observed among participants switching from failing 2nd-line PI-based ART vs. failing 1st-line NNRTI-based ART. This is consistent with the possibility that individuals who have failed two prior ARV regimens vs. one prior ARV regimen might have greater adherence challenges. Author Contact: carole.wallis@lancet.co.za Acknowledgements: The authors thank the A5381 study participants and funding sources (PEPFAR; NIAID/NIH).