Development and evaluation of Tasso-M50 method for dried blood viral load detection

Abstract

Background: At-home blood collection would enable HIV VL assessment for intensive monitoring without frequent access to a clinic—such as for PrEP programs, perinatal or breastfeeding pediatric monitoring, discordant couples, or participation in ART interruption studies. We present the development and qualification of a scalable, highthroughput PCR method using dried blood collected in Tasso-M50 cartridges

Method: We developed a dried blood assay with samples from 21 people with HIV (5% female, 67% African American, mean age 51 years, NCT03588715). At clinic visits, we collected a) capillary blood in two 4-well Tasso-M50 devices and b) matched plasma samples. Between visits, participants self-collected in 2 devices that were mailed back. Automated RNA extraction and duplicate RT-qPCR reads with dual LTR/GAG FAM-labeled primers were performed (up to 16 dried blood PCR reads per timepoint, sourced from ~400 µL blood collection) Results: Dried blood assay PCR reagents/instruments were qualified on plasma samples (94% sensitivity & specificity, relative to reference lab), and dried blood VL was comparable between home- and clinic-collected samples. In a performance test, the dried blood assay had 99.5% specificity and an estimated 95% limit of detection of 130 c/mL if 16 PCR reads are used. However, 64% of clinic visits with undetected pVL had median M50 reads \geq 200 c/mL, due to cell-associated HIV: dried blood VL of these discordant samples correlated with total cellular HIV DNA ($r^2 = 0.90$) and was stable on suppressive therapy (mean slope -3.0% per week [95% CI -8.3 to +2.5%]). DNase reduced dried blood VL while preserving detectability of RNA standards, suggesting that ~27% of the stable dried blood background in this cohort was contributed by DNA and the remainder by RNA

Conclusions:

- VL can be measured in dried blood collected at home or in the clinic
- But a large, stable background signal exists, reflecting viral reservoir size
- For dried blood VL assays: Summaries of false positive / negative rate (relative to plasma reference) may be misleading — as can be confounded by variability in reservoir size
- Dried blood can measure total HIV burden (eg, to detect new infections) - But detection of viral rebound upon stopping ART would require correcting for each individual's stable background signal

Figure 1. Dried blood assay performance statistics (HIV RNA spiked into whole blood)

		Dried blood assay (Tasso-M50)			Plasma assay (to qualify process used in dried blood assay)		
Specificity		99.5% (1/218 blanks read positive Ct = 37.7)			99.5% (1/200 blanks read positive, Ct = 39.4)		
		Proje		ected			
Sensi- tivity	Effective input size	Single PCR read: 15.6 µL	One device (8 PCR reads): 125 μL	Two devices (16 PCR reads): 250 μL	140 µL		
	95% LOD: RNA copies per PCR read	19	27	31	34		
	95% LOD: c/mL	1200	220	130	250		
Precision		Coefficient of variation <40%, in quantifiable range					
Accuracy		Within 80%-125% of nominal, in quantifiable range					
200 Dried blood: Median & IQR of spike-ins 150 125 100 80 67 50 500-20k c/mL: Quantifiable range 50 500-20k c/mL: Assay accurate & linear, but CV exceeds 40%							
20	0 - Plasma: Modia	n & IOR of snike-ins					

^aRolling 2-week windows used to match home and clinic collections for plotting; showing median readout for each window. ^bSemiparametric model: spline to control for temporal change in VL over time; one effect parameter on home/clinic ratio.

Figure 4. Dried blood VL has large "background signal" compared to matched clinical reference (plasma VL)

Curves show linear fits on log axes; intercepts provide estimate of typical background signal size in each study. Points show all dried blood assay replicates (up to 16 per timepoint) versus single reference value.

Acknowledgements

QC of code & dataset: Alejandra Herrera Reyes

¹Merck & Co., Inc., Rahway, NJ, USA; ²The Wistar Institute, Philadelphia, PA, USA; ³University of Pennsylvania, Philadelphia, PA, USA; ⁴Philadelphia FIGHT, Philadelphia, PA, USA; ⁵Tasso, Inc., Seattle, WA, USA

• Home collection within (80% - 125%) bioequivalence bounds vs clinic collection:

0.85x (95% CI = 0.80, 0.90)^b

• Only 39/408 (10%) of matched windows^a are discordant (median readout detected in home or clinic, undetected in the other). Of

-20 (51%) occur with detected value <200 c/mL

- 37 (95%) occur with detected value <1000 c/mL

• 64% (121 of 188) of clinic visits with undetected reference lab VL had median dried blood VL ≥200 c/mL

 Typical background signal ~5000 c/mL (BEAT study), ~30,000 c/mL (CAR-T study)^c

• Background signal shows ~flat slope over time: -3.0% per week [95% CI: -8.3 to +2.5]

Figure 6. Background dried blood signal tracks size of latent reservoir (total or intact cellular DNA)

• Background signal computed as median dried blood VL during suppressive therapy. Where median is undetected, imputation was done on the fraction of replicates positive. Equations shown use log₁₀-scaled values

Figure 7. DNase reduced – but did not eliminate – background dried blood signal

ut did not eliminate – background dhed blood signal							
% reduction in dried blood background signal with DNase	% reduction of RNA standards with DNase	Estimated % RNA in this sample					
70%		53%					
64%		62%					
61%	400/	68%					
59%		71%					
59%		72%					
56%	42 /0	77%					
53%		82%					
52%		83%					
49%		88%					
58%		73%					

Participant ID	% reduction in dried blood background signal with DNase	% reduction of RNA standards with DNase	Estimated % RNA in this sample
9	70%		53%
18	64%	42%	62%
6	61%		68%
1	59%		71%
7	59%		72%
10	56%		77%
4	53%		82%
11	52%		83%
3	49%		88%
Avg	58%		73%

• Whole blood samples from 9 participants on suppressive ART: DNase wash reduced dried blood background by 58% (avg.) – DNase wash reduced RNA standards by smaller amount (42%) - \rightarrow Implies signal/background ratio boosted by 38% on average

• Assuming DNase removes 100% of DNA \rightarrow typical dried blood background signal in this cohort is ~73% RNA, ~27% DNA

Daniel S. Rosenbloom¹; Brad R. Evans¹; Brian Squadroni¹; Jennifer Nguyen¹; Livio Azzoni²; Erin E. Coppola¹; Guoxin Wu¹; Jill Maxwell¹; Jessicamarie Morris²; Kenneth Lynn³; Paul Zuck¹; Pablo Tebas³; Karam Mounzer⁴; Brian N. Ross²; Matthew Fair²; Emmanouil Papasavvas²; Emily Hiserodt⁴; Emily J. Welch⁵; Kevin Bateman¹; Luis J. Montaner²; Bonnie Howell¹

Copyright © 2024 Merck & Co., Inc., Rahway, NJ, USA and its affiliates. All rights reserved.