
Education Sciences, Universitat Oberta de Catalunya, Barcelona, Spain

Alessandra Borgognone¹, Anna Prats², Bonaventura Clotet^{1,2,3,4,5,6}, José Moltó^{2,5,6}, Beatriz Mothe^{1,2,4,5,6}, Roger Paredes^{1,2,3,4,5,6,7}, Jose A. Muñoz-Moreno^{2,6,8} ¹IrsiCaixa AIDS Research Institute, Badalona, Spain, ²Fundació Iluita contra les Infeccions, Badalona, Spain, ³Universitat de Vic, Vic, Spain, ⁵CIBERINFEC – ISCIII, Madrid, Spain, ⁶Department of Infectious Diseases, Hospital Universitari Germans Trias i Pujol, Badalona, Spain, ⁷Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA, ⁸Faculty of Psychology and

BACKGROUND

The microbiome-gut-brain axis interplay is a major player in regulating the neurocognitive functioning.

The BCN02-Neuro study¹ investigated the effects of the HIV latency reversing agent romidepsin (RMD) on the central nervous system (CNS) in early-treated HIV-infected individuals (Figure 1), showing no significant alterations in cognitive and functional outcomes. Although, participants with lower cognitive functioning (standardized neuropsychological test score covering 6 cognitive domains, NPZ-6) showed a trend toward progressive improvement over time (Figure 2).

Additionally, the BCN02-Microbiome study² identified host and gut microbial proinflammatory signatures as potential predictors of immune-mediated HIV-1 control during 32-weeks of monitored antiretroviral pause.

OBJECTIVES

- I. To characterize the gut microbiota composition and functions in participants with lower and higher cognitive functioning in the BCN02-Neuro study.
- II. To identify potential gut microbial signatures for predicting cognitive functioning evolution.
- III. To validate microbial predictive signatures in two BCN02 sub-cohorts.

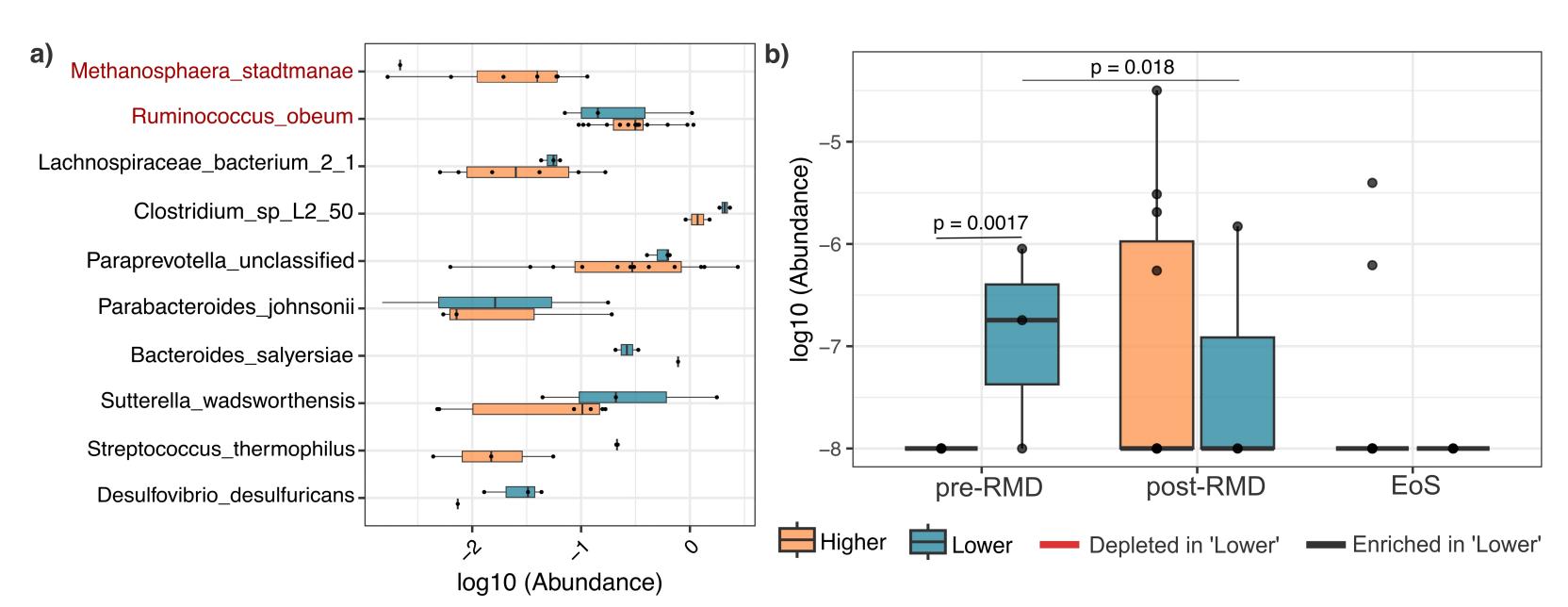
METHODS

Participants with lower (\leq -0.5, n=3) and higher (>-0.5, n=15) NPZ-6 score at the study entry and with characterized gut microbiome (shotgun metagenomics data analyzed using Metaphlan2 and Humann2) were included in the study. Assessments were performed before (pre-RMD) and after RDM administration (post-RMD) and at the end of the study (EoS) (**Figure 1**).

Associations between microbial taxa, cognitive functioning and functional outcomes (CNS-related symptoms, emotional status, daily functioning, and quality of life) were characterized in HIV-1 viremic controllers and non-controllers (C-NC, n=11) and RMD-intervention and RMD-no-intervention (I-NI, n=16) sub-cohorts from the paternal BCN02 study³.

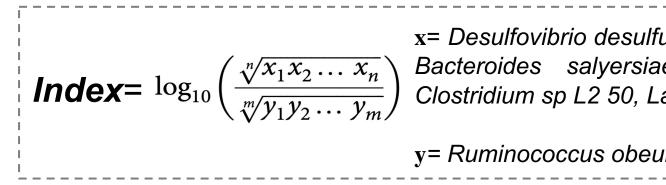
Differentially abundant taxa were estimated by Random forest and discriminant LEfSe analysis. Spearman's correlations and BH-adjusted p-values were calculated by R/rcorr and microbiome profiling assessed using R/phyloseq.

Interactions between gut microbiota signatures and CNS status in a HIV cure strategy

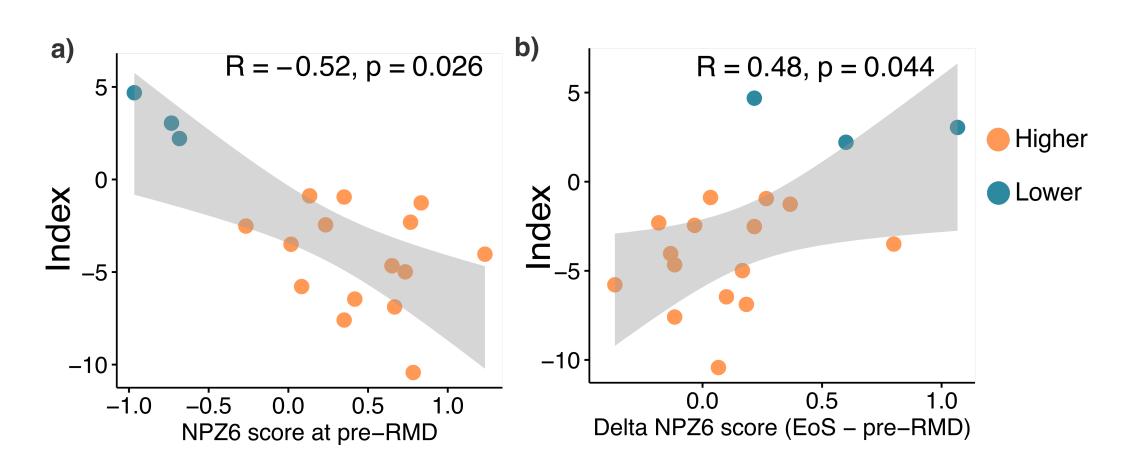

Figure 2. Longitudinal changes of NPZ-6 score.

HIV-infected early-treated patients presenting worse cognitive functioning and enriched in neurological-linked bacteria showed recovery in the BCN02-Neuro study

RESULTS


I. Taxonomic and functional signatures associated with different cognitive functioning

Participants with lower NPZ-6 score at pre-RMD were enriched in bacterial species previously described in autism spectrum disorder (ASD) and other neurological disorders⁴ (Figure 3a). Also, this group was functionally enriched in 1,2-propanediol degradation (pathway of propionic acid synthesis) at pre-RMD (Figure 3b). Previous evidence suggests that propionic acid is produced by gut bacteria related to ASD, such as Desulfovibrio spp and Clostridium spp⁵.



II. Microbiome-based index for NPZ-6 score evolution

To investigate the evolution of NPZ-6 score-associated bacteria over time, an index was obtained by calculating the log ratio of geometric means of taxon abundances enriched in the Lower NPZ-6 group (p-val < 0.05) over taxa depleted in Lower NPZ-6 group (p-val < 0.05), compared to the Higher NPZ-6 group, as following⁶:

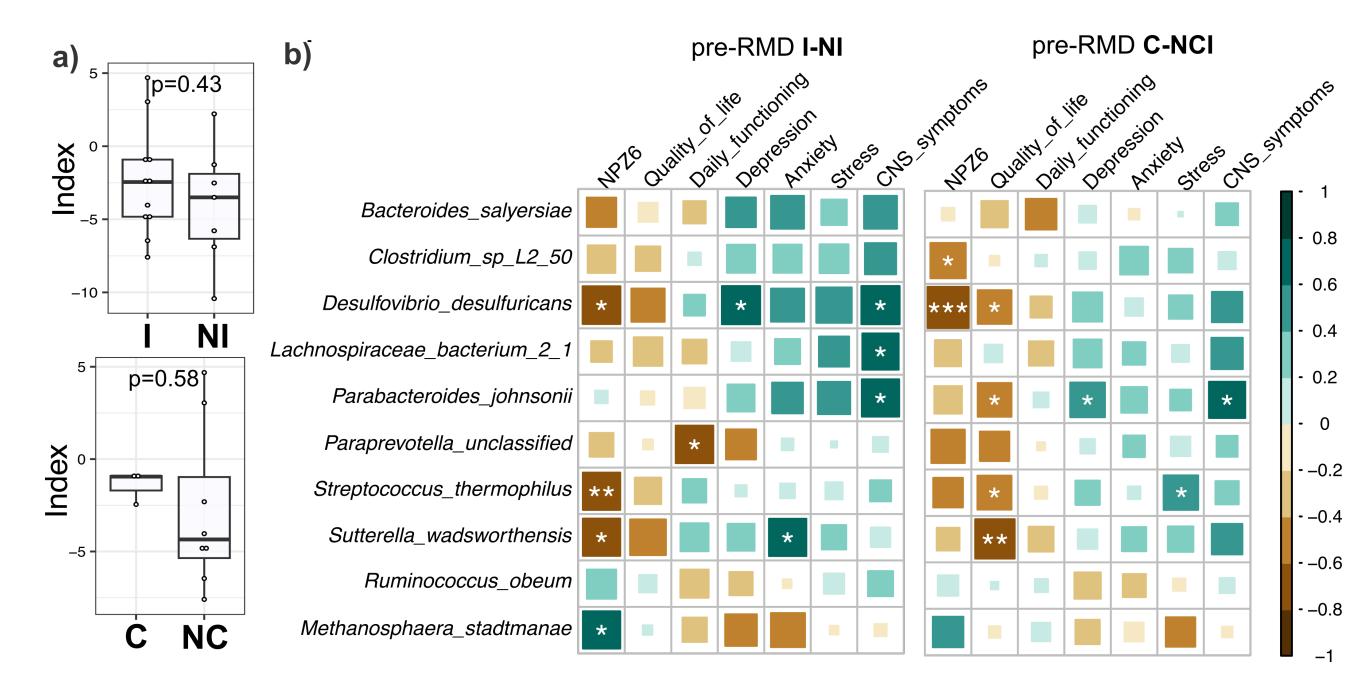
positively correlated with delta NPZ-6 score (EoS – pre-RMD) (Figure 4b).

Figure 4. Correlations between microbiome-based Index and NPZ-6 score.

RESULTS

Also, in the participants with lower NPZ-6 score, the microbiome-based index showed a significant longitudinal decrease from pre-RMD to EoS (p=0.039) (Figure 5).

Figure 3. a) Differentially abundant bacterial species between Lower NPZ-6 and Higher NPZ-6 groups (p<0.05) at pre-RMD. b) Longitudinal changes of L-1,2-propanediol degradation (PWY-7013) pathways.

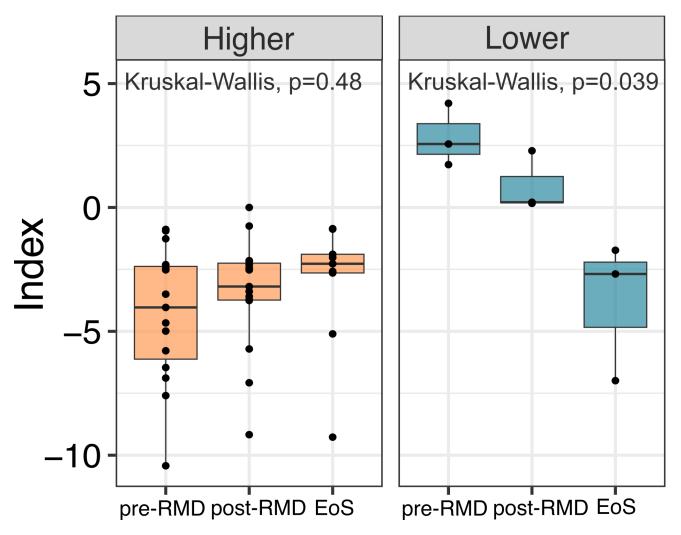

> x= Desulfovibrio desulfuricans, Streptococcus thermophilus, Sutterella wadsworthensis, Bacteroides salyersiae, Parabacteroides johnsonii, Paraprevotella unclassified, Clostridium sp L2 50, Lachnospiraceae bacterium_2_1_58FAA at pre-RMD

> y= Ruminococcus obeum, Methanosphaera stadtmanae at pre-RMD _____

The index was negatively correlated with NPZ-6 score at pre-RMD (Figure 4a) and

III. Microbiome-based index evaluation in BCN02 sub-cohorts

BCN02 sub-cohorts showed no differences in the microbial index values (Figure 6a). In the BCN02 subcohorts, bacteria associated to neurological disorders **negatively** correlated with NPZ-6 score, quality of life and daily functioning and **positively** with CNS related symptoms, depression, stress and anxiety. An opposite trend was observed in bacteria enriched in participants with higher NPZ-6 score and typically described as anti-inflammatory (*R. obeum* and *M. stadtmanae*)⁷ (**Figure 6b**).


CONCLUSIONS

- with emotional status.
- evolution.

Author Co Alessandra Borgognor

Roger Paredes Jose A. Muñoz-Moreno

Figure 5. Longitudinal evolution of microbiome-based index in Lower and Higher NPZ-6 groups.

Figure 6. a) Microbiome-based index comparison in the BCN02 sub-cohorts at pre-RMD. b) Correlations between differentially abundant bacteria, cognitive functioning and functional outcomes significance in the BCN02 sub-cohorts at pre-RMD. Significance after FDR adjustment is indicated by asterosks (*p < 0.05; **p < 0.01; ***p < 0.001).

 \checkmark In participants presenting worse cognitive functioning at study entry and progressive NPZ-6 score recovery, the abundance of bacterial species related to neurological alterations is significantly reduced over time.

 \checkmark Bacterial species related to neurological alterations showed global negative correlation with cognitive functioning and quality of life and positive correlation

 \checkmark The microbial index might represent a potential predictor of cognitive functioning

Bibliography

ontact Information		
one	<u>aborgognone@irsicaixa.es</u> <u>rparedes@irsicaixa.es</u>	
າດ	jmunoz@lluita.org	

Muñoz-Moreno JA et al., AIDS, 2022, Mar 1;36(3):363-372 Borgognone A et al., Microbiome, 2022, Apr 11;10(1):59 Mothe B et al., Front Immunol. 2020, 11: 823 Sokala K et al., Pharmacol Res, 2021, Oct;172:105840 MacFabe D et al., Microb Ecol Health Dis, 2015, May 29;26:28177 Vujkovic-Cvijin I et al., Nat Commun, 2020 May 15;11(1):2448 Hills Jr RD et al., Komp Nutr Diet, 2022, 2:3-18