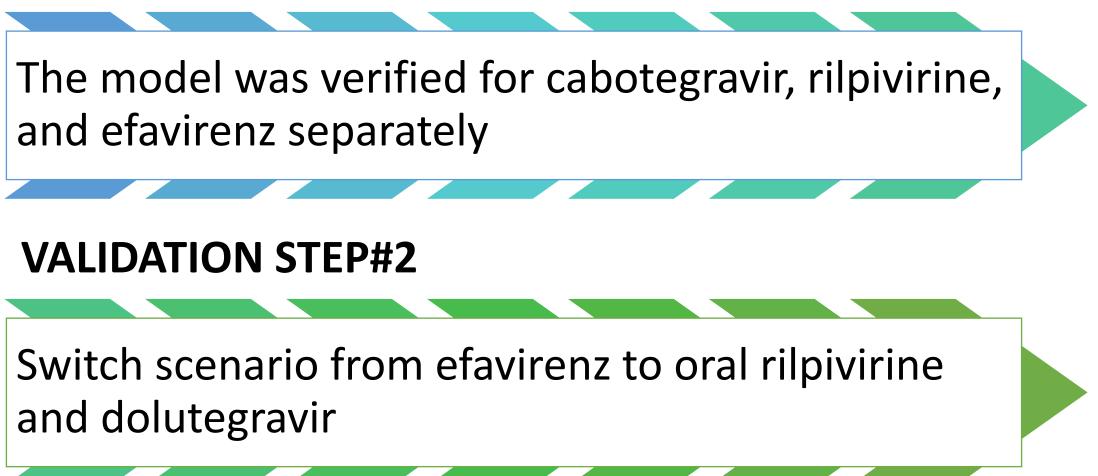

Intramuscular cabotegravir/ rilpivirine concentrations after switching from efavirenz

Universität

BACKGROUND

Intramuscular cabotegravir and rilpivirine (IM CAB/RPV) are used once viral load suppression is achieved.

While CAB/RPV are substrates of UGT1A1/CYP3A4, efavirenz induces these enzymes therefore switching from an efavirenz containing regimen to IM CAB/RPV could possibly result in a time window with suboptimal drug levels.

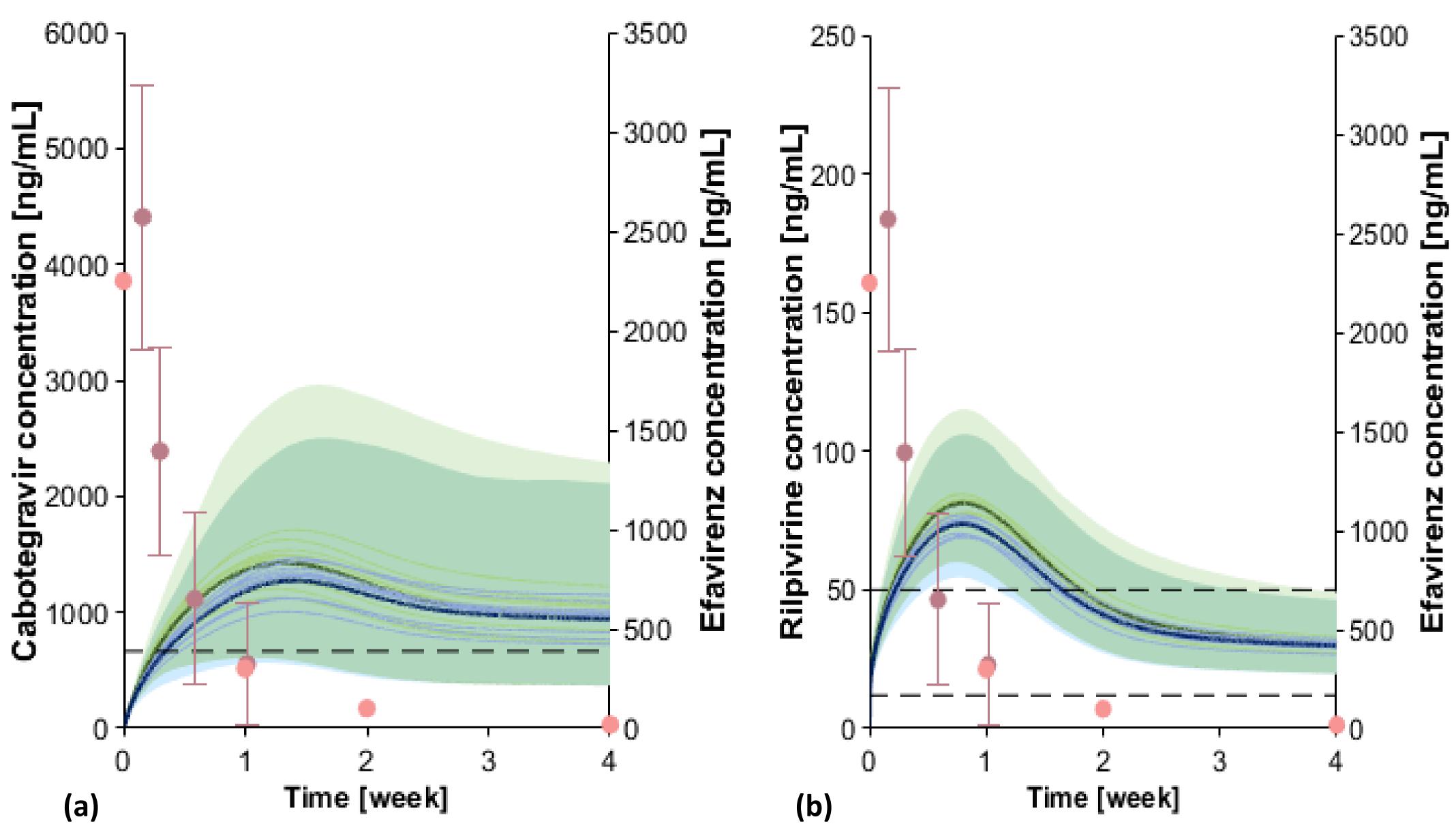

AIM

To simulate the initial IM CAB/RPV concentrations after physiologically based stopping efavirenz using pharmacokinetic (PBPK) modelling.

METHODS

The *in-house* PBPK model implemented with a mechanistic intramuscular framework was validated against clinically observed data [1]. The model was considered validated if the predictions were within 2-fold of observed clinical data.

VALIDATION STEP#1


A cohort of 100 virtual individuals (20-50 years old, 50% female, 18.5-30 kg/m²) was generated to simulate IM CAB/RPV concentrations over the dosing interval when administering IM CAB/RPV loading dose (600/900 mg) 12 hours after the last oral dose of efavirenz (600 mg). IM CAB/RPV concentrations during the switch period were compared to those in absence of residual efavirenz concentrations.

Sara Bettonte ^{1, 2}, Mattia Berton ^{1, 2}, Felix Stader ³, Manuel Battegay ^{1, 2}, and Catia Marzolini ^{1, 2, 4}

University Hospital of Basel, Basel, Switzerland, ² University of Basel, Basel, Switzerland, ³ Certara UK Limited, Sheffield, United Kingdom, ⁴ University of Liverpool, Liverpool, United Kingdom.

No risk of suboptimal drug levels during the switch from an efavirenz containing regimen to longacting intramuscular cabotegravir/ rilpivirine.

Figure 1. Concentration-time profiles for (a) cabotegravir 600 mg intramuscular loading dose, (b) rilpivirine 900 mg intramuscular loading dose in absence (green) and presence (blue) of efavirenz residual induction

Legend: the solid lines, the solid bold line, and the shaded area represent the geometric mean of each virtual trial, the geometric mean of all trials, and the 90% normal range of all virtual individuals. In figure (a) the dashed line represents the 4-fold PA-IC₉₀ for cabotegravir (664 ng/mL). In figure (b) the dashed lines represent the PA-IC₉₀ for rilpivirine (12 ng/mL) and the minimal concentration for therapeutic response (50 ng/mL). The lilac and the pink markers represent the mean measured efavirenz plasma decay concentration as reported by Crauwels et al. [2] and by Mills et al., [3] respectively.

RESULTS

- observed clinical data.

geometric mean (CV).

geometric mean (CV).			
	C _τ [ng/mL]	C _τ [ng/mL]	
	absence of	after stopping	C _r ratio
	efavirenz	efavirenz	
Intramuscular cabotegravir			
Day 1	421 (20)	373 (22)	0.89
Day 7	1362 (41)	1180 (40)	0.87
Day 14	1251 (55)	1153 (50)	0.92
Day 28	962 (59)	939 (54)	0.98
Intramuscular rilpivirine			
Day 1	45 (17)	42 (16)	0.94
Day 7	79 (24)	71 (21)	0.90
Day 14	45 (35)	41 (29)	0.92
Day 28	31 (35)	30 (30)	0.98

CONCLUSIONS

The PBPK model predicts that switching from an efavirenz-containing regimen to IM CAB/RPV does not put at risk of having a time window with suboptimal

drug levels.

REFERENCES:

[1]. Bettonte et al., Clinical Infectious Diseases 2022 [2]. Crauwels et al., Antiviral Therapy 2012 [3]. Mills et al., HIV Clin Trials 2013

Author Contact Information: sara.bettonte@unibas.ch

Fundings: this work was supported by Swiss National Science Foundation [grant number 188504]

Universitätsspital Basel

The model was successfully verified as all predictions were within 2-fold of

Initiating IM CAB/RPV 12 hours after the last dose of efavirenz was predicted to have a minimal effect on CAB and RPV concentrations (Table 1). Efavirenz was predicted to have a modest effect on IM RPV concentrations with the lowest reduction being 10% after 7 days from the last dose of efavirenz (Table 1). Residual efavirenz concentrations were predicted to have a less pronounced effect on IM RPV compared to the observed switch data with oral RPV as RPV has a high first-pass metabolism [2].

Table 1. Predictions of IM cabotegravir and rilpivirine concentrations at days 1, 7, 14, and 28 after stopping efavirenz. The results are expressed as