Trained immunity features in NK cells of HIV-1 elite controllers

Albert L Groenendijk^{1,2}, Adriana Navas¹, Wilhelm AJW Vos^{1,3}, Marc JT Blaauw^{1,4}, Louise van Eekeren¹, Mike van der Kolk⁸, Casper Rokx², Annelies Verbon^{2,5}, Mihai G Netea^{1,7}, Leo AB Joosten^{1,6}, Andre JAM van der Ven¹, Jéssica C dos Santos¹ et al. for the 2000HIV Human Functional Genomics Partnership Program ¹Radboudumc, Nijmegen, the Netherlands, ²ErasmusMC, Erasmus University, Rotterdam, The Netherlands, ⁴Elizabeth-Tweesteden Ziekenhuis, Tilburg, The Netherlands, ⁵UMC Utrecht, the Netherlands, ⁶Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, ⁷Life and Medical Sciences Institute, University of Bonn, Germany, ⁸ViiV Healthcare, UK

BACKGROUND

The presence of natural Killer cells (NKs) with memory features have been associated with increased responsiveness upon secondary exposure to viral infectious agents. Memory features within innate immune cells has been attributed to a phenomenon named as trained immunity. Here, our aim is to investigate whether NKs of EC have trained immunity features.

METHODS

Double case-control design

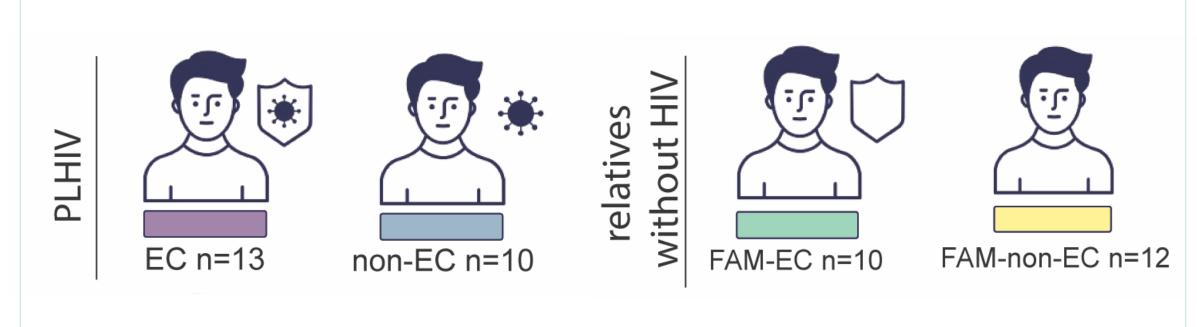


Figure 1. Elite controllers (EC) and normal progressors on ART (non-ECs); 1st degree family members (FAM) of EC and FAM of non-ECs.

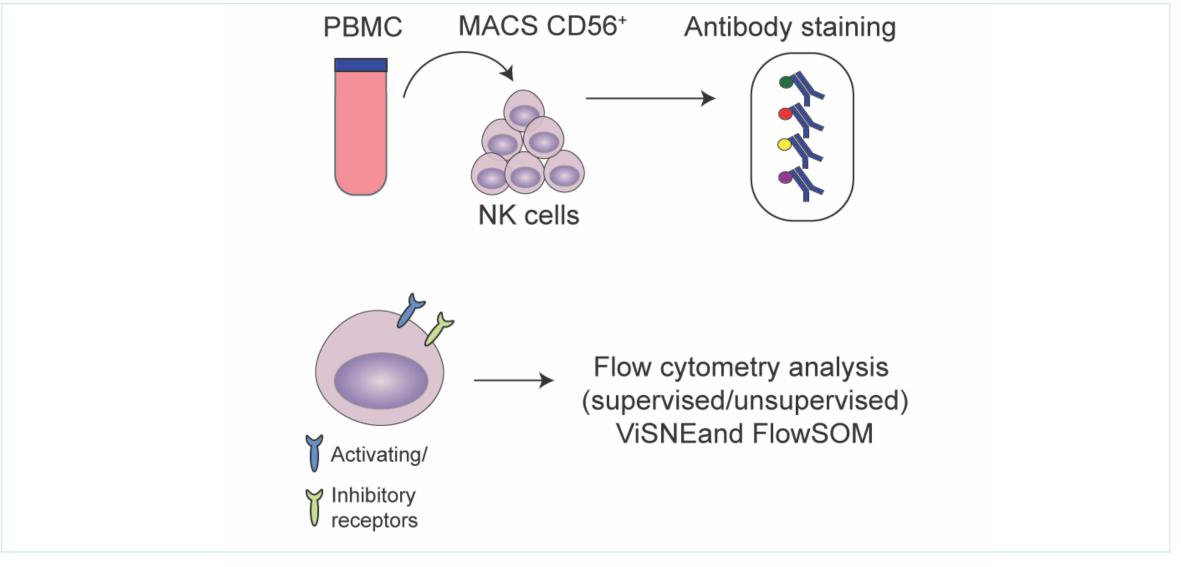
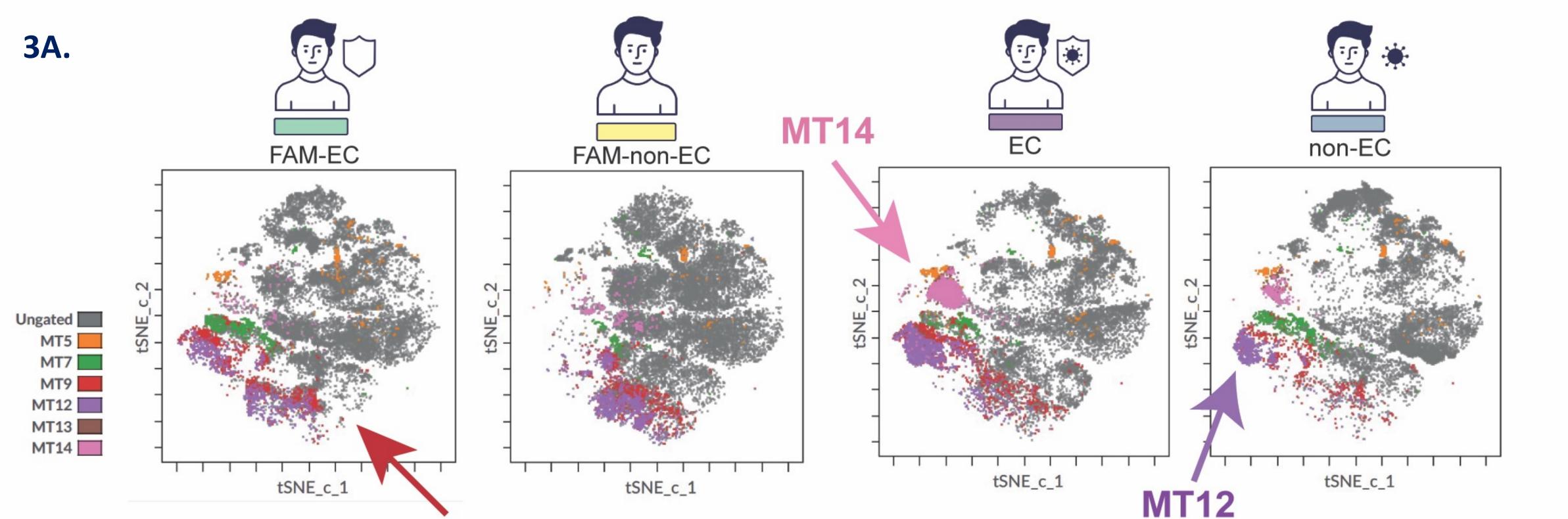


Figure 2. NKs flow cytometry on CD56⁺ sorted NKs. Live/Dead, HLA-DR, CD3, CD45, CD56, CD16, CD57, CD94, NKG2A, NKG2C, NKG2D, ILT2 (LILRB1), KIR2DL2/3, DNAM, NKp30 and NKp46 markers were assessed.

Table 1. Demographics of the participants.

	EC	Non-EC	FAM-EC	FAM-non-EC
Male sex (%)	8 (61.5)	9 (90)	3 (30)	3 (25)
Median age (IQR)	52 (41-67)	55.5 (54-58)	51 (46.8-59.5)	53 (48-71)
Relation (%)				
Sibling	-	-	8 (80)	9 (75)
Parent	-	-	1 (10)	1 (8.3)
Child	-	-	1 (10)	2 (16.7)
CMV lgG (%)	13 (100)	10 (100)	6 (60)	5 (41.7)



The persistence of memory NK cells expressing NKG2C is associated to spontaneous HIV control

RESULTS

Unsupervised analysis (FlowSOM) identifies metaclusters enriched for NKG2C⁺ NK cells

МТ9

Distinct profiles of NK cells expressing NKG2C are increased in ECs and 1st degree relatives

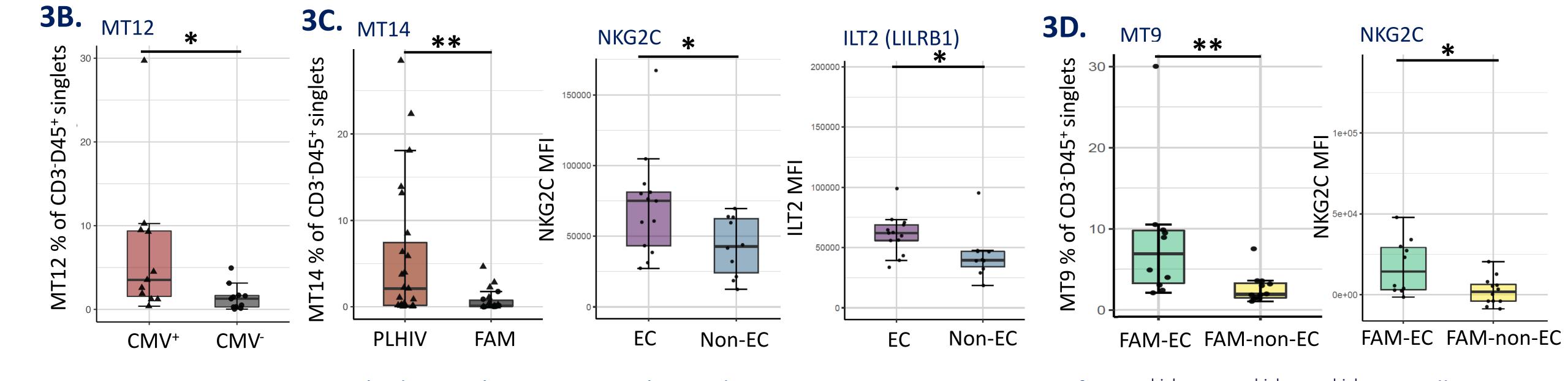


Figure 3. A. NKG2C enriched metaclusters across the study participants. B. Percentages of CD57^{high}NKG2C^{high}KIR2^{high} NK cells were specific to CMV-seropositivity (MT12).

C. Percentages of CD57^{high}NKG2C^{high}KIR2^{low} NK cells were specific to PLHIV (MT14); NKG2C and ILT2 MFI. **D.** Percentages of NKG2C^{high}KIR2^{high} NK cells were present in FAM-ECs (MT9); NKG2C MFI.

> UNIVERSITEI GENT

314 Increased H3K4me3 at the promoter of KLRC2 (NKG2C) in EC KLRC2 H3K4me3 Donor 1 Donor 2 H3K4me3 Donor 3 **4B**. KLRC2 H3K4me3

Donor 1 H3K4me3 Donor 2 H3K4me3 Donor 3

Figure 4. ChIP-seq data of NK cells isolated from A. ECs and B. non-ECs. Tracks of H3K4me3 peaks near *KLRC2*.

CONCLUSIONS

- A specific NK cells subpopulation expressing NKG2C and ILT2 is associated to HIV control.
- The increased NKG2C expression in 1st degree relatives of ECs indicates the presence of protective responses prior HIV acquisition.
- Epigenetics contributes to the maintenance of NKG2C expression in NK cells of ECs.
- Long-term persistence of NK cells in a memory state - trained NK cells - might favor an optimized secondary response leading to HIV control.

ADDITIONAL KEY INFORMATION

Jessica.dossantos@radboudumc.nl Vos et al. Front Immunol 2022 Dec 20; 13:982746

www.2000HIV.com

