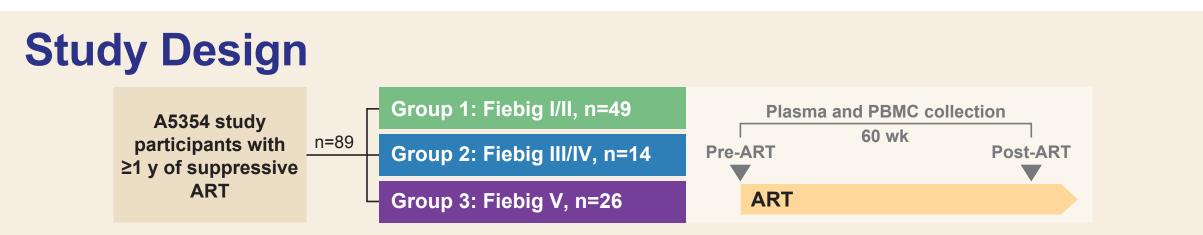


Laurie VanderVeen,¹ Brian Moldt,¹ Lisa Selzer,¹ Jiani Li,¹ Aiyappa Parvangada,¹ Jintanat Ananworanich,² Trevor A. Crowell,³ Joseph J. Eron,⁴ Eric S. Daar,⁵ Richard Haubrich,¹ Romas Geleziunas,¹ Joshua Cyktor,⁶ John W. Mellors,⁶ Christian Callebaut,¹ for the AIDS Clinical Trials Group (ACTG) A5354 Study Team ¹Gilead Sciences, Inc., Foster City, CA; ²Universiteit van Amsterdam, Nederland; ³US Military HIV Research Program, Walter Reed Army Institute of Research Program, Walter Reed Army Institute of Research, Silver Spring, MD; ⁴The University of Pittsburgh, PA


Introduction

- Broadly neutralizing antibodies (bNAbs) against HIV-1 may recognize virally infected cells expressing viral envelope (Env) protein and target them for elimination; however, the high genetic diversity of Env impacts viral susceptibility to bNAbs and may limit their applicability across a wide patient population
- Starting antiretroviral therapy (ART) during acute or early HIV infection (AEHI) may limit reservoir genetic diversity and size, thereby increasing the likelihood of susceptibility to bNAbs
- Understanding the extent of viral diversity and susceptibility to bNAbs in people with HIV initiating ART during AEHI and their evolution during long-term ART may inform use of bNAbs in HIV treatment and cure
- The ACTG A5354/EARLIER study (NCT02859558) is a multinational prospective study that initiated ART during AEHI¹

Objective

To characterize Env diversity and sensitivity to bNAbs targeting Env epitopes (V3 glycan and CD4 binding site) in ACTG A5354 study participants at ART initiation and after ART suppression

Methods

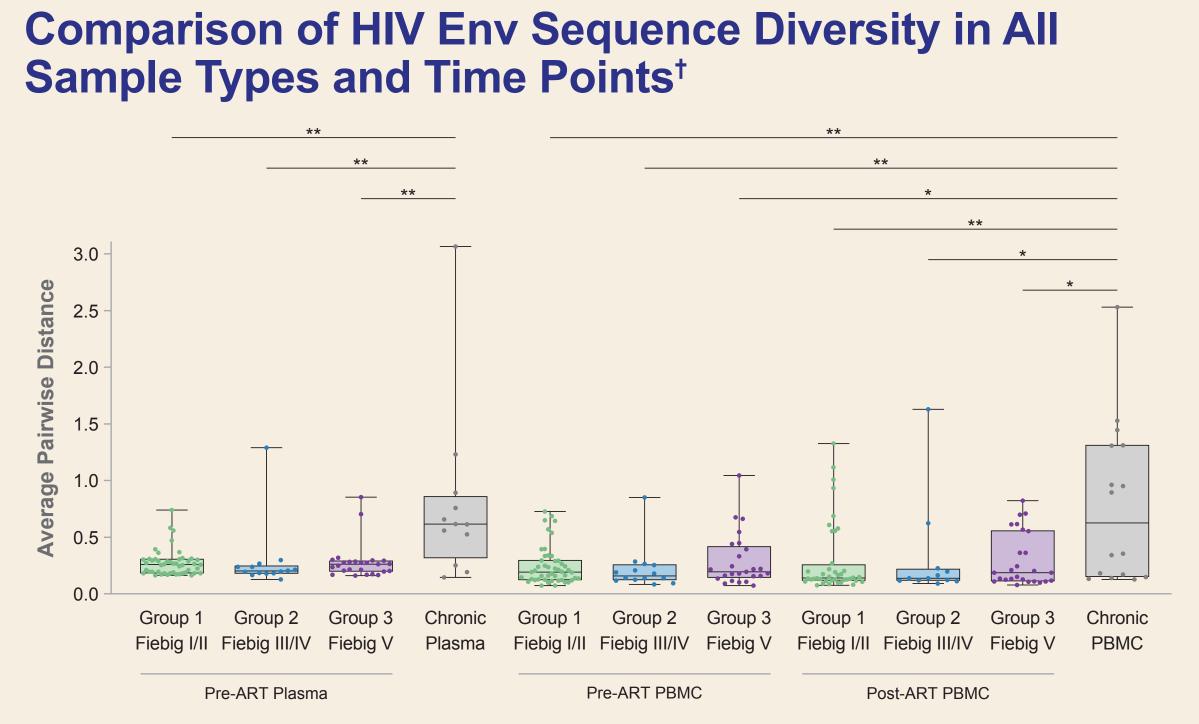
PBMC, peripheral blood mononuclear c

- Plasma and PBMCs were collected prior to ART initiation (pre-ART plasma) and pre-ART PBMC) and after 60 wk of ART (post-ART PBMC) from 89 A5354 participants who initiated ART during Fiebig I–V phases of HIV-1 infection
- HIV Env was genotyped from plasma virus and PBMC provirus by nextgeneration sequencing (MiSeq[™] System, Illumina[®], Inc., San Diego, CA)
- HIV subtyping was based on the consensus HIV Env gene obtained from plasma RNA
- Env diversity was estimated by average pairwise distance analysis using a sliding windows approach across the HIV Env gene
- Viral sensitivity to the bNAbs elipovimab (EVM; an engineered PGT121 variant; V3 glycan antibody) and 3BNC117 (CD4 binding site antibody) was assessed by the presence of previously defined HIV-1 Env genotypic signatures²; to qualify virus for a given HIV Env signature, sequence variability was not permitted at the positions interrogated (variability threshold set to <1% to ensure signature is present in all viral quasi-species)

bNAb Genotypic Sensitivity Signatures*

EVM (elipovimab)		3BNC117	
Env amino acid positions	PPV (%)	Env amino acid positions	PPV (%)
No signature	62	No signature	75
N332	75	1201	78
N332/D325	80	I201/F353	84
N332/D325/H330	83	I201/F353/I108	86
N332/D325/H330/T63	91	I201/F353/I108/A281	91
N332/D325/H330/T63/T320	93	I201/F353/I108/A281/E102	92
N332/D325/H330/T63/T320/L179	97	I201/F353/I108/A281/E102/Y318	93

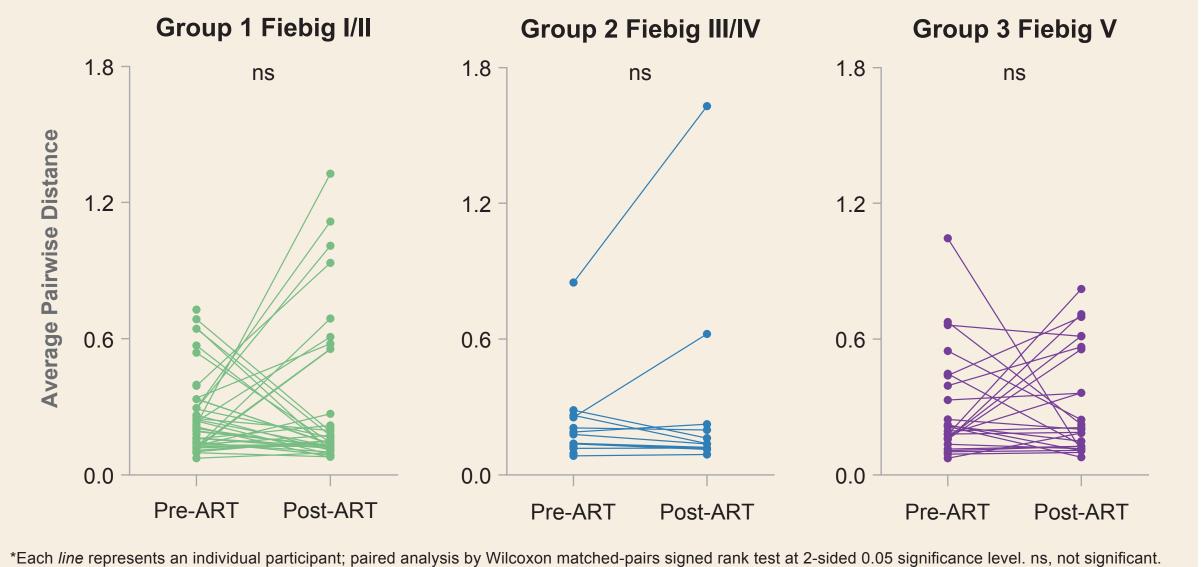
*HXB2 numbering used for HIV Env amino acid positions. N332, N332 glycan N-X-S/T; PPV, positive predictive value (probability that a virus with a given signature is sensitive to bNAb).

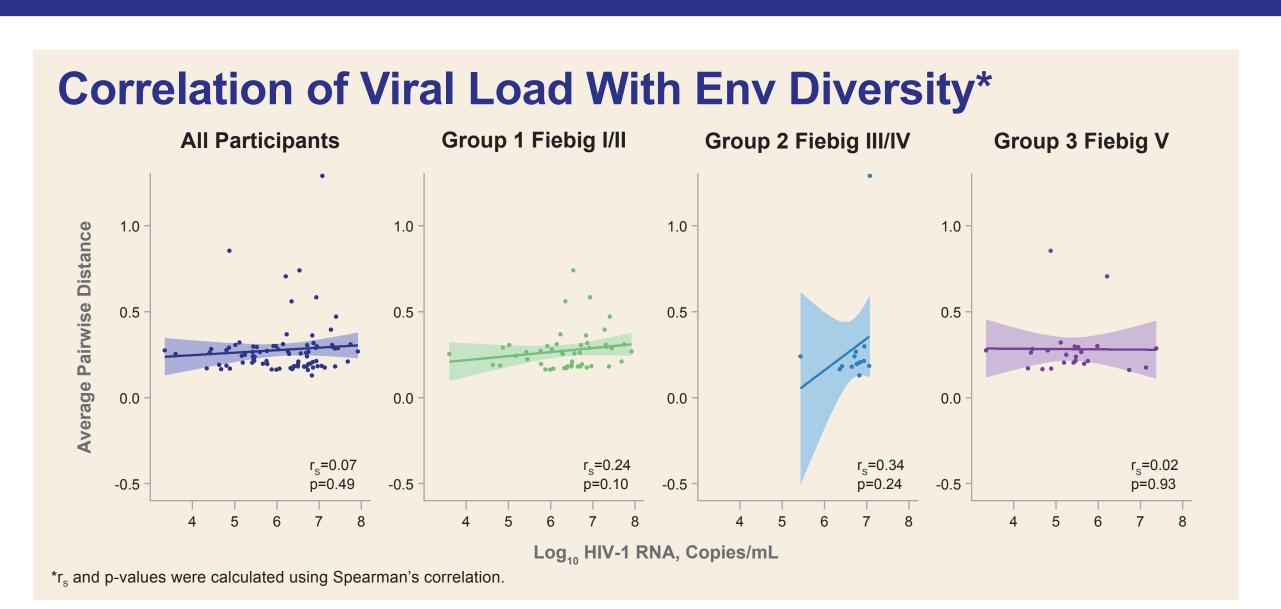

 Statistical analyses were conducted using Prism 8 (GraphPad Software, San Diego, CA)

HIV Envelope Diversity and Sensitivity to bNAbs Across Stages of Acute and Early HIV

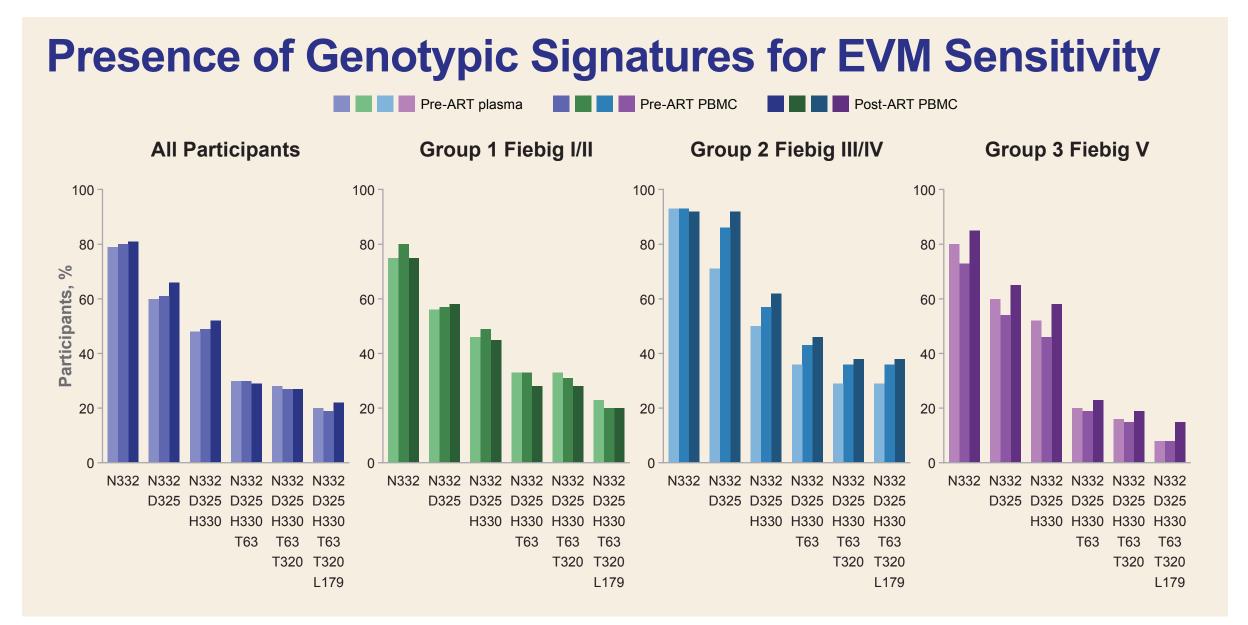
Results

HIV Env Sequencing Data							
	Participant Samples With Available Data, n						
Sample	Group 1 Fiebig I/II n=49	Group 2 Fiebig III/IV n=14	Group 3 Fiebig V n=26	Total N=89			
Pre-ART plasma	48	14	25	87			
Pre-ART PBMC	49	14	26	89			
Post-ART PBMC	40	13	26	79			

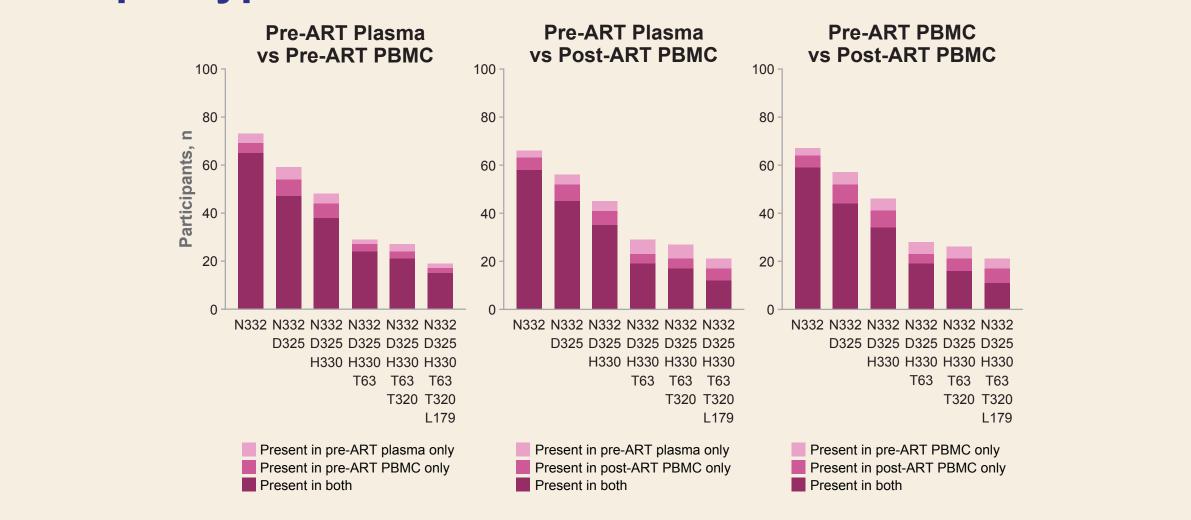

 Participants were mostly infected with subtype B viruses (n=76), followed by subtype C (n=8) and other types (n=5)


*p<0.05, **p<0.01: group comparisons obtained by 2-sided Mann Whitney test; [†]Data shown as *box and whisker plots* including all data points; plasma and PBMC virus from individuals in clinical trials who initiated ART during chronic infection were included for comparisons (chronic plasma and chronic PBMC; data provided

- HIV Env diversity was significantly lower in virus from individuals who initiated ART during AEHI vs chronic infection
- Env diversity of virus from pre-ART plasma, pre-ART PBMC, and post-ART PBMC was not significantly different between Groups 1, 2, and 3
- Env diversity of PBMC provirus from pre-ART samples was not significantly different vs post-ART samples in Groups 1, 2, and 3



No consistent change in Env diversity was observed in PBMC provirus following suppressive ART



Env diversity in pre-ART plasma virus was not associated with plasma HIV-1 RNA levels at ART initiation

- The proportions of EVM signatures were similar in pre-ART plasma, pre-ART PBMC, and post-ART PBMC virus across all participants, and within or between Groups 1, 2, and 3 (p>0.05; comparisons by chi-square test)
- Susceptibility to EVM (N332glycan/D325/H330 signature) was comparatively higher in post-ART PBMC from participants who initiated ART during AEHI vs chronic infection: 18 of 40 Group 1 participants (45%), 8 of 13 Group 2 participants (62%), and 15 of 26 Group 3 participants (58%) were susceptible compared with 6 of 15 chronic participants (38%; p>0.05, Fisher's exact test)

Concordance of EVM Sensitivity Signatures Across Sample Types and Time Points

There was a high level of concordance for EVM signatures between pre-ART plasma, pre-ART PBMC, and post-ART PBMC

Presence of Genotypic Signatures for 3BNC117 Sensitivity Pre-ART plasma **Group 3 Fiebig V** All Participant -353 F353 F353 F353 F353 F353 F353 F353 F353 F353 1108 1108 1108 1108 A281 A28 E102 E102 E102 E102 E102 E102

 The proportions of 3BNC117 signatures were similar in pre-ART plasma, pre-ART PBMC, and post-ART PBMC virus across all participants, and within or between groups (p>0.05, comparisons by chi-square test)

Concordance of 3BNC117 Sensitivity Signatures Across Sample Types and Time Points

There was a high level of concordance for 3BNC117 signatures between pre-ART plasma, pre-ART PBMC, and post-ART PBMC virus

Presence of Sensitivity Signatures to EVM and 3BNC117*

	Participants, n (%)				
Sensitivity Category	Pre-ART Plasma n=87	Pre-ART PBMC n=89	Post-ART PBMC n=79		
EVM [†]	42 (48)	44 (49)	41 (52)		
3BNC117 [†]	48 (55)	55 (62)	47 (59)		
EVM + 3BNC117	27 (31)	29 (33)	25 (32)		

*Sensitivity predictions for EVM using N332glycan/D325/H330 signature (83% PPV) and for 3BNC117 using I201/F353 (84% PPV); †Includes viruses susceptible

Conclusions

- In the ACTG A5354 study, participants who initiated ART during AEHI had lower HIV Env sequence diversity compared with people with HIV who initiated ART during chronic infection
- Viral Env diversity and prevalence of genotypic bNAb sensitivity signatures were comparable across participants in Fiebig I–V
- There were no significant differences in Env diversity or bNAb sensitivity signatures before and after ART
- Data in this population indicate that the viral reservoir formed during AEHI is representative of the circulating virus at ART initiation and suggest that there is limited evolution of the provirus during >1 y of suppressive ART

References: 1. Crowell TA, et al. Clin Infect Dis 2021;73:e643-51; 2. Moldt B, et al. J Acquir Immune Defic Syndr 2021;88:61-9. Acknowledgments: We are grateful to all study participants, the ACTG A5354 clinical study investigators and their study teams, and to SEQ-IT GmbH & Co.KG (Kaiserslautern, Germany) for sequence analysis. This work was funded by Gilead Sciences, Inc. Editing and production assistance were provided by BioScience Communications, New York, NY, funded by Gilead.