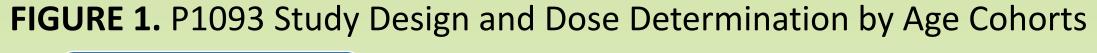
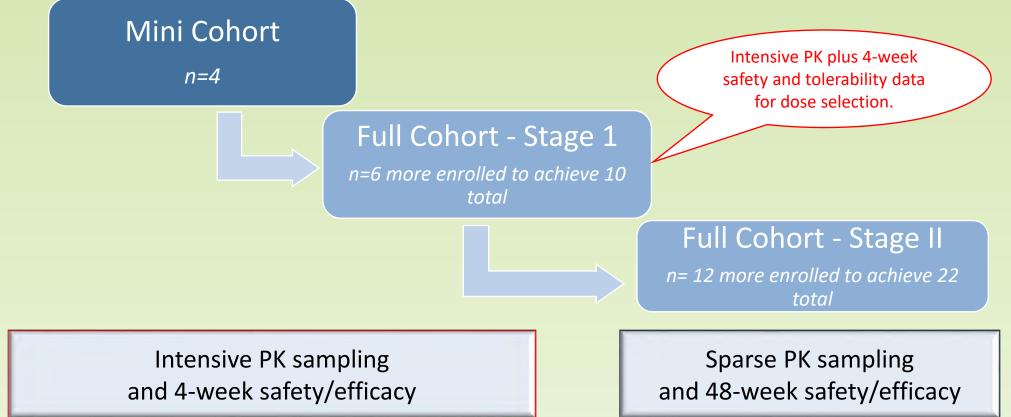


¹University of California San Francisco, San Francisco, CA, USA; ³GlaxoSmithKline, King of Prussia, PA, USA; ⁴Harvard T.H. Chan School of Public Health, Boston, MA, USA; ⁵ FHI 360, Durham, NC, USA; ¹University of Alabama at Birmingham, AL, USA; ⁴Harvard T.H. Chan School of Public Health, Boston, MA, USA; ⁵ FHI 360, Durham, NC, USA; ¹University of Alabama at Birmingham, AL, USA; ⁴Harvard T.H. Chan School of Public Health, Boston, MA, USA; ⁵ FHI 360, Durham, NC, USA; ¹University of Alabama at Birmingham, AL, USA; ⁴Harvard T.H. Chan School of Public Health, Boston, MA, USA; ⁵ FHI 360, Durham, NC, USA; ⁴Harvard T.H. Chan School of Public Health, Boston, MA, USA; ⁵ FHI 360, Durham, NC, USA; ⁴ Harvard T.H. Chan School of Public Health, Boston, MA, USA; ⁴ Harvard T.H. Chan School of Public He ⁶Frontier Science & Technology Research Foundation, Inc, Amherst, NY, USA; ⁷ViiV Healthcare, Research Centre Reed Project–Kericho, Kenya; ⁹University of Zimbabwe College of Health Sciences Clinical Trials Research Centre (UZCHS-CTRC); ¹⁰National Institute of Child Health and Human Development, Bethesda, MD, USA; ¹¹NIAID, Bethesda, MD, USA; ¹²Albert Einstein College of Medicine, Bronx, NY, USA; ¹³Jacobi Medical Center, Bronx, NY, USA;


Background and Methods


BACKGROUND

Dolutegravir (DTG, S/GSK1349572) is recommended as first-line treatment for HIV-infected adults and children 6 years and older due to its potency, high barrier to resistance, convenience and tolerability (1). A 5 mg dispersible tablet (DTG-DT) formulation for children is being evaluated in IMPAACT P1093 (NCT01302847), an ongoing phase I/II open-label dosefinding study. The first DTG-DT dosing tested did not meet target drug exposures for Cohorts III and IV; the doses assessed in Cohort V met target exposures (2). Here we present the intensive pharmacokinetic (PK), 4-week safety and efficacy data of higher dosing for DTG-DT in children ages 6 months to <6 years.

METHODS

Children with HIV were either ART-experienced and failing or ART-naive. Enrollment was stratified into two age cohorts of 10 children (≥6 months to <2 years and ≥2 to <6 years). DTG-DT was dosed once daily by WHO weightband (Table 1). Children received DTG-DT alone or added to stable-failing or empiric initial background regimens. Stage 1 intensive PK sampling was completed between days 5-10 under partial-fasting (no high fat food/liquid 2 hours prior, 1 hour after) conditions (Figure 1). Background regimens were optimized based on enrollment HIV genotypes. Safety, tolerability, and plasma HIV-1 RNA levels were assessed through 4 weeks.

TABLE 1. DTG Dispersible Tablet Dosing

Weight Revised _		Dose (mg/kg) for Weight Range		Dose
	Dose (mg)	Lower Weight	Upper Weight	previously tested (mg)
6 - <10	15	2.50	1.50	10
10 - <14	20	2.00	1.43	15
14 - <20	25	1.79	1.25	15

PK AND 4-WEEK OUTCOMES OF DOLUTEGRAVIR **DISPERSIBLE TABLETS IN HIV-INFECTED CHILDREN**

Theodore Ruel¹, Edward P. Acosta², Rajendra P. Singh³, Carmelita Alvero⁴, Kathleen George⁵, Stephanie Popson⁶, Mattie Bartlett⁶, Ann Buchanan⁷, Cindy Brothers⁷, Lucy Koech⁸,

Results

BASELINE CHARACTERISTICS

• 10 children were enrolled to each age cohort.

TABLE 2. Baseline Demographics

Characteristic	≥2 years to <6 years (n=10)	≥6 months to <2 years (n=10)			
Age (years)	3.6 (2.1, 6.0)	1.0 (0.5, 1.7)			
Female	3	7			
Weight (kg)	13.0 (9.3, 17.5)	7.5 (6.5, 9.5)			
Region Africa	6	8			
Asia	2	0			
North America	1	1			
South America	1	1			
CD4 %	25.1 (0.3, 42)	31 (20, 49)			
CD4 count (cells/mm ³)	1260 (1, 2463)	2359 (1352, 8255)			
HIV-1 RNA [Log ₁₀ (copies/ml)]	4.3 (2.7, 5.9)	4.1 (2.5, 6.1)			
Values are median (range) or n					

PHARMACOKINETICS

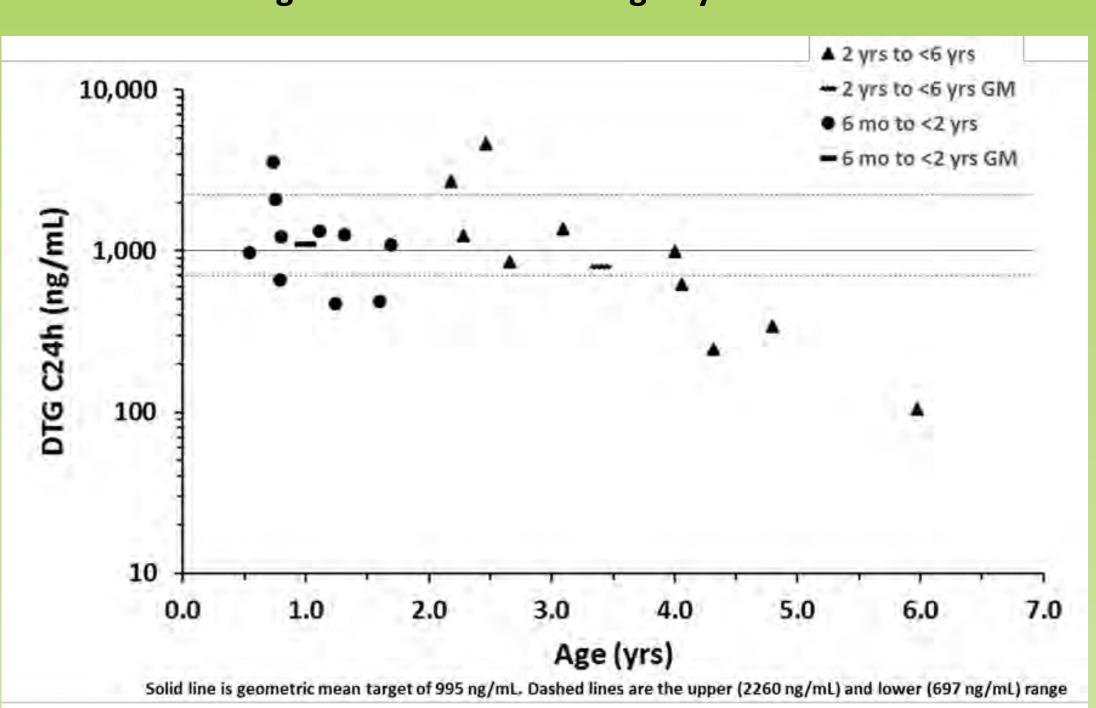

• The GM C_{24h} and AUC_{24h} and of each age cohort were within target range. [Based on adult data, exposure targets were geometric mean (GM) (range) C_{24h} of 995 (697-2260) ng/mL) and AUC_{24h} of 46 (37-134) mg.h/L].

TABLE 3. Intensive PK Results for DTG DT

Cohort	Weight	Dose	AUC _{24h}	C _{max}	C _{24h}
(n=10 each)	(kg)^	(mg/kg)^	(mg x h/L)*	(ng/mL)*	(ng/mL)*
≥2 years to	13	1.63	59.0	5181	791
<6 years	(8.6-17.5)	(1.4-2.0)	(62.2)	(44)	(105.1)
≥6 months to	7.7	1.95	70.2	5702	1094
<2 years	(6.8-9.5)	(1.58-2.21)	(49.6)	(37.1)	(70.4)
^ Median (range); * Geometric mean (arithmetic CV%)					

Overall support for the International Maternal Pediatric Adolescent AIDS Clinical Trials Network (IMPAACT) was provided by the National Institute of Allergy and Infectious Diseases (NIAID) with co-funding from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the National Institute of Mental Health (NIMH), all components of the National Institutes of Health (NIH), under Award Numbers UM1AI068632 (IMPAACT LOC), UM1AI068616 (IMPAACT SDMC) and UM1AI106716 (IMPAACT LC), and by NICHD contract number HHSN2752018000011. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Tichaona Vhembo⁹, Rohan Hazra¹⁰, Ellen Townley¹¹, Andrew Wiznia^{12,13}, for the IMPAACT P1093 Team

FIGURE 2. Dolutegravir DT: 24 hour Trough by Cohort

VIROLOGY

 HIV-1 RNA levels were <400 c/mL in 16/20 and <50 c/ml in 8/20 participants after 4 weeks of treatment, with median decrease from BL of 2.38 log10 (c/mL) (IQR: 1.36, 3.11).

TABLE 4. Optimized Background Regimens

ARV regimens	≥2 years to <6 years	≥6 months to <2 years
ZDV, 3TC	4	
D4T, 3TC	1	
ABC, FTC	1	1
ABC, 3TC	1	8
ZDV, 3TC, LPV/r	1	
ABC, 3TC, LPV/r	1	1
3TC, EFV, DRV/r	1	

Conclusions

4 WEEK SAFETY AND TOLERABILITY

- 3 participants experienced Grade 3 or 4 adverse events (AE), none of which were attributed to study drug
- One experienced grade 4 neutropenia
- One experienced grade 3 high lipase and grade 3 low bicarbonate
- One suffered viral pneumonia, diarrhea, and mycobacterium avium complex infection
- No participants permanently discontinued study drug due to AE

DISCUSSION

- The increased weight-band DTG-DT dosing was successful in meeting the pre-specified AUC_{24h} and C_{24h} targets for both age cohorts among children 6 months to <6 years old.
- Previously reported DTG dosing met target concentrations in children 4 weeks to <6 months of age (Ruel, 2018).
- The DTG dispersible tablet formulation has been well-tolerated.
- Together with the additional PK, long-term safety and efficacy data collected, these novel results will support regulatory approval for DTG in these age groups and form the basis for World Health Organization weight-band based dosing recommendations for DTG-DT in children.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the full P1093 protocol team, NICHD and NIAID, ViiV Healthcare and GSK, the P1093 sites and staff, and the P1093 participants and their caregivers.

REFERENCES

- 1. World Health Organization.. "Annex 3. Dosages of ARV drugs ", from https://www.who.int/hiv/pub/guidelines/ARV Guidelines-2018-Annex3.pdf
- 2. Ruel T, et al. Pharmacokinetic and 4-week safety/efficacy of dolutegravir (S/GSK1349572) dispersible tablets in HIV-infected children aged 4 weeks to <6 years: results from IMPAACT P1093. XXII International AIDS Conference (Amsterdam, Netherlands) July 25, 2018. Poster Number: LBPED023