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Figure 2. Blocks to HIV transcription and assays to investigate the HIV transcription profile. 
Diagram of the blocks that regulate HIV transcription and assays used to characterize the HIV transcription profile.
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Figure 1. Study design and sample processing. 
Cryopreserved peripheral blood mononuclear cells (PBMCs) 
were available from nine participants at baseline (day -21) and 
4h after the second (day 112+4h) and the third (day 119+4h) 
romidepsin infusions. Eight of the nine participants underwent an 
ATI. Peripheral blood mononuclear cells were pelleted and 
nucleic acids were extracted using TRI Reagent. Cell-associated 
HIV transcripts  (read-through, total initiated [TAR],  5’ elongated 
[R-U5-pre-Gag; “longLTR”],  polyadenylated [“polyA”],  and 
multiply-spliced [Tat-Rev]), total HIV DNA (longLTR), and the 
cellular gene TERT were quantified in duplicate using ddPCR [5].

Romidepsin increases read-through, total, elongated, and polyadenylated but not multiply-spliced transcripts
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HIV DNA and elongated transcripts predict time to viral rebound
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Detection of different TAR sequences after romidepsin infusion
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Figure 3.  HIV transcription profile 
before and after romidepsin therapy.
Dynamics of each HIV transcript per 
million PBMC at baseline (day 0) and 4 
hours after the second (day 112+4h) and 
the third (day 119+4h) romidepsin 
infusions. 
Each color represents a different 
individual from the REDUC part B study. 
Determinations below the limit of 
quantification (LOQ) are represented as 
solid dots.

Figure 4. Blocks to HIV transcription before and after romidepsin 
therapy.
Changes in:
    transcriptional interference (read-through/total transcripts), 
    elongation (elongated/total transcripts), 
    completion (polyadenylated/elongated transcripts), and 
    multiple-splicing (multiply-spliced/polyadenylated transcripts)
at baseline (day 0) and 4 hours after the second (day 112+4h) and the third 
(day 119+4h) romidepsin infusions.
Each color represents a different individual from the REDUC part B study.

Figure 5. Association between HIV DNA and HIV transcripts before and after romidepsin infusion, and between 
HIV levels and time to rebound (after ATI) or time to subsequent suppression (after restarting ART). 
(A) Spearman correlations between the total HIV DNA per million PBMCs and time to rebound after ATI (measured as days
to VL>50 copies/ml of plasma and days to VL>1,000 copies/ml of plasma), and time to suppression (quantified as days to
VL<50 copies/ml of plasma after ART reinitiation);
(B) Spearman correlations between the different HIV transcripts per million PBMCs and time to viral rebound (measured
as days to VL>50 copies/ml of plasma and days to VL>1,000 copies/ml of plasma); and
(C) Spearman correlations between total HIV DNA per million PBMCs and the different HIV transcripts per million PBMCs.
Each color represents a different individual from the REDUC part B study.

Figure 6. Droplet digital PCR (ddPCR) plot 
showing the detection of initiated HIV transcripts 
(TAR RNA) with different amplitudes (likely 
different sequences) after romidepsin infusion. 
One dimension ddPCR plot corresponding to the 
amplification of HIV RNA TAR sequences from 
participant #ID25 in channel 1 (FAM).
The plot represents the droplet fluorescence 
amplitude detected at baseline (day 0) and 4 hours 
after the second (day 112+4h) and the third (day 
119+4h) romidepsin infusions.
Red square highlights the cloud of droplets with higher 
fluorescence amplitude, detected after romidepsin 
therapy.

Antiretroviral therapy (ART) cannot eliminate the HIV genomes integrated 
in latently infected cells, which are a major barrier to cure HIV [1-3].

One strategy to eradicate HIV consists of reactivating viral transcription with 
latency-reversing agents (LRAs), such as histone deacetylase inhibitors (HDACi).

A recent clinical trial, REDUC part B, analyzed the administration of the therapeutic 
HIV vaccine Vacc-4x and rhuGM-CSF as local adjuvant, in combination with the 
HDACi romidepsin. This approach showed an increase in unspliced cell-associated 
HIV RNA and residual plasma viremia after romidepsin infusions, along with a 
reduction in total HIV DNA [4]. However, the mechanism by which romidepsin 
reverses HIV latency in vivo remains unclear.

AIM: To characterize the HIV transcription profile before and after 
romidepsin therapy in available samples from the REDUC part B study.

1. After romidepsin infusions, we observed:
    Reactivation of transcriptionally silent proviruses (Fig. 6),
    An increase in HIV transcriptional initiation and especially elongation, but
    not completion or multiple splicing (Fig. 3-4), 
    An inverse correlation between time to rebound after ATI and levels of   
    both total HIV DNA and elongated HIV RNA (Fig. 5).

2. Romidepsin may play a role in strategies to reverse latency, but new
approaches are needed to increase HIV transcriptional completion and
multiple splicing, which are likely necessary for productive infection and
immune recognition/killing of HIV-infected cells.

3. Therapies that increase HIV transcription but do not lead to killing of
infected cells may actually shorten time to rebound after ATI.
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Limitations
1. The parent study had sequential study interventions (vaccination and then romidepsin), and we did not
have access to samples between vaccination and romidepsin.
2. Samples were available from only 9 of 17 trial participants, of whom only 1 had an increase in viral load
after romidepsin.
3. The presence of non-B subtypes may have affected HIV levels and detection frequencies.
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