LONG-LASTING ALTERATIONS IN FAT DISTRIBUTION IN PLWH EXPOSED TO THYMIDINE ANALOGUES

Marco Gelpi¹ MD; Shoaib Afzal² MD, PhD; Andreas Fuchs³ MD; Jens Lundgren MD¹; Ninna Drivsholm¹; Amanda Mocroft⁵, MSc Professor; Anne-Mette Lebech¹ MD DMSc; Birgitte Lindegaard^{6,7} MD, PhD; Jørgen Tobias Kühl³, MD; Per Ejlstrup Sigvardsen, MD³; Lars Køber³, MD DMSc Professor; Børge G. Nordestgaard^{2,8}, MD DMSc Professor; Klaus Fuglsang Kofoed^{3,9}, MD DMSc Associate Professor; Susanne Dam Nielsen¹ MD DMSc Associate Professor 1Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen University Hospitalet, University of Copenhagen, Copenhagen, Copenhagen, Copenhagen, Copenhagen, Copenhagen, Denmark; 5HIV Epidemiology and Biostatistics Unit, Department of Infection and Population Health, UCL, London, UK; 6Center for inflammation and Metabolism, Rigshospitalet; 7Department of pulmonary and infectious diseases, Nordsjællands Hospital, Hillerød, Denmark; 8Faculty of Health and Medical Scienses, University of Copenhagen, Denmark; on behalf of the Copenhagen Comorbidity in HIV Infection (COCOMO) Study

BACKGROUND

Thymidine analogues (TA) and didanosine (ddl) have been associated with redistribution of body fat from subcutaneous (SAT) to visceral (VAT) adipose tissue, which, in turn, is a factor for risk disease (CVD). We explored cardiovascular differences in adipose tissue distribution between people living with HIV (PLWH) with/without prior exposure to TA and/or ddl and uninfected controls and the association with CVD risk factors.

METHODS

761 PLWH from the COCOMO study aged > 40 and 2,283 age- and sex-matched uninfected controls from the GCPS study were included. PLWH were stratified according to prior exposure to TA and/or ddl. VAT and SAT were determined by abdominal CT-scan (Figure 1). Hypotheses were tested by linear and logistic regression analyses adjusted for age, sex, origin, smoking, physical activity, and BMI.

Figure 1 - VAT and SAT determination on CT scan

0.275s/8.0mm/2.0x4 459.0mm

<u>Table 2</u> - Linear Regression Model predicting the degree of change (with 95% CI) in cm2 of VAT and SAT

	Visceral adipose tissue				Subcutaneous adipose tissue			
	Unadjusted β* [95% Cl]	p-value	Adjusted β* [95% Cl]	p-value	Unadjusted β* [95% Cl]	p-value	Adjusted β* [95% Cl]	p-value
Study Group								
PLWH without exposure to TA/ddl	Ref		Ref		Ref		Ref	
Uninfected controls	17.6 [9.5;25.7]	< 0.0001	0.2 [-6.4;6.8]	0.9319	34.2 [24.1;44.3]	< 0.0001	13.0 [5.8;20.3]	0.0004
PLWH with exposure to TA/ddl	26.6 [16.8;36.3]	< 0.0001	21.6 [13.8;29.3]	< 0.0001	-15.6 [-27.8;-3.4]	0.0122	-14.8 [-23.3;-6.3]	0.0006
Age, per 5 years	10.6 [9.3;11.9]	< 0.0001	7.3 [6.31;8.4]	< 0.0001	-2.6 [-4.3;-0.9]	< 0.0001	-2.9 [-4.05;-1.7]	< 0.0001
Sex, male	43.9 [37.2;50.7]	< 0.0001	34.9 [29.3;40.5]	< 0.0001	-56.5 [-65.1;-47.9]	< 0.0001	-58.5 [-64.4;-52.5]	< 0.0001
BMI, per unit	9.1 [8.6;9.7]	< 0.0001	8.7 [8.2;9.2]	< 0.0001	14.8 [14.3;15.4]	< 0.0001	14.5 [13.9;15.0]	< 0.0001

*β coefficients represent the degree of change in cm² of VAT and SAT for every 1-unit of change in the explanatory variables. Abbreviations: visceral adipose tissue, VAT; subcutaneous adipose tissue, SAT; people living with HIV, PLWH; thymidine nucleoside analog reverse-transcriptase inhibitors, TA; didanosine, ddl; body mass index, BMI; confidence interval, CI Multivariable models were adjusted for: age, sex, origin, physical activity, BMI, and study group

RESULTS

uninfected controls (54.2 vs 54.4 years and 85.5% vs 85.5% male). 451 (60.5%) PLWH had exposure to TA and/or ddl. Of those, 6 (1.4%) were still exposed. Mean cumulative exposure was 6.6 (SD, 4.2) years and time since discontinuation was 9.4 (SD, 2.7) years. After adjustment, prior exposure to TA and/or ddl was associated with 21.6 cm2 larger VAT (13.8 –29.3) compared to HIV infection without exposure (Table 2). HIV-negative status was associated with similar VAT compared to HIV infection without exposure (Table 2). After adjustment, HIV infection with exposure to TA and/or ddl was associated with 14.8 cm2 smaller SAT compared to HIV infection without (-23.3 - -6.3). HIVnegative status was associated with 13.0 cm2 larger SAT compared to HIV infection without exposure (5.8 - 20.3) (Table 2). Cumulative exposure to TA and/or ddl (3.7 cm2 per year [2.3 - 5.1]), but not time since discontinuation (-1.1 cm2 per year [-3.4 – 1.1]), was associated with VAT (Table 3). In PLWH, prior exposure to TA and/or ddl was associated with excess risk of hypertension (aOR 1.62 [1.13 - 2.31]), hypercholesterolemia (aOR 1.49 [1.06 - 2.11]), and low HDL (aOR 1.40 [0.99 – 1.99]), when adjusting for confounders.

Age and sex distribution were similar in PLWH and

Table 1 - Demographic and clinical characteristics of the study populations

Conoral obaractoristica	PLWH	Controls	n volue	
General characteristics	n = 761	n = 2,283	p-value	
Age, mean (SD)	54.2 (9.0)	54.4 (9.0)	0.594	
Gender male, n (%)	651 (85.5)	1,953 (85.5)	1.000	
Origin, n (%)			< 0.001	
Scandinavia	570 (76.1)	2,122 (94.0)		
Other Europe	77 (10.3)	113 (5.0)		
Middle East and Indian sub-	12 (1 6)	19 (0.9)		
continent	12 (1.0)	10 (0.0)		
Other	90 (12.0)	4 (0.2)		
HIV Transmission mode, n (%)				
Heterosexual	166 (22.5)	-	-	
IDU	9 (1.2)	-	-	
MSM	516 (69.9)	-	-	
Other	47 (6.4)	-	-	
Current CD4 group, n (%)				
<200	13 (1.8)	-	-	
200-349	50 (6.8)	-	-	
350-500	116 (15.7)	-	-	
>500	560 (75.8)	-	-	
CD4 nadir < 200, yes, n (%)	337 (45.9)	-	-	
cART, yes, n (%)	743 (99.8)	-	-	
Current viral load < 50, n (%)	713 (96.2)	-	-	
Years since HIV positive test, years,	16 0 (8 9)	-	-	
mean (SD)	10.0 (0.0)			
Years since cART initiation, years, mean	12 1 (6 4)	-	-	
(SD)	12.1 (0.1)			
Exposure to TA and/or ddl, n (%)	451 (60.5)	-	-	
Present exposure, n (%)	6 (1.4)	-	-	
Previous exposure, n (%)	445 (98.6)	-	-	
Smoking status, n (%)			< 0.001	
Never smoker	256 (34.3)	1,042 (46.0)		
Current smoker	196 (26.2)	275 (12.1)		
Ex-smoker	295 (39.5)	950 (41.9)	0.004	
Physical activity, n (%)			< 0.001	
Inactive	68 (9.4)	114 (5.0)		
Moderately inactive	259 (35.7)	//1 (34.0)		
ivioderately active	310 (42.7)	1,099 (48.4)		
Very active	85 (12.3)	286 (12.6)		
Abdominal adipose tissue distribution				
VAT, cm ² , mean (SD)	104.4 (70.6)	106.5 (64.4)	0.456	
SAT, cm ² , mean (SD)	140.7 (77.9)	184.8 (83.9)	< 0.001	
VAT-to-SAT ratio, mean (SD)	1.0 (1.3)	0.6 (0.4)	< 0.001	
BMI, mean (SD)	26.8 (3.9)	< 0.001		

(SAT); body mass index, BMI; standard deviations, SD; intravenous drug use, IDU; male-to-male sex, MSM combined antiretroviral therapy, cART thymidine nucleoside analog reverse-transcriptase inhibitors, TA; hepatitis C virus, HCV

CONCLUSIONS

Prior exposure to TA and/or ddl was associated with long-lasting alterations in abdominal fat distribution, persisting after TA and/or ddl discontinuation, which may be involved in the excess risk of hypertension, hypercholesterolemia, and low HDL found in PLWH with prior exposure to TA and/or ddl. Our findings may help to identify a subgroup of PLWH who may benefit from more intensive monitoring and cardiovascular prevention interventions.

Poster number 0676

Figure 2 - Association between exposure to TA and/or ddl, hypertension, hypercholesterolemia, and low HDL

Association between exposure to thymidine analogues and/or didanosine and hypertension, hypercholesterolemia, and low HDL. Results from uni- and- multivariable logistic regression are reported as odds ratios (95% CI). Multivariable models were adjusted for exposure to TA and/or ddl, age, gender, smoking, physical activity, origin, and BMI. Abbreviations: people living with HIV, PLWH; thymidine nucleoside analog reverse-transcriptase inhibitors, TA; didanosine, ddl; body mass index, BMI; visceral adipose tissue area, VAT; confidence interval. Cl.

Table 3 - Association between cumulative exposure to TA and ddl and VAT and SAT

		Visceral adipose			Subcutaneous		
		tissue			adipose tissue		
		Adjusted β [95% Cl]	p-value		Adjusted β [95% Cl]	p-value	
Cumulati TA and/o	ive time of exposure to r ddl						
<	3.6 years	Ref			Ref		
3	.6 – 6.3 years	17.5 [0.2;34.8]	0.047		-1.3 [-16.2;13.6]	0.862	
6	.4 – 9.2 years	40.8 [23.2;58.5]	< 0.001		7.6 [-7.6;22.8]	0.328	
>	9.2 years	44.4 [26.0;62.7]	< 0.001		2.2 [-13.6;18.1]	0.781	
Time since discontinuation of TA and/or ddl							
<	8.1 years	Ref			Ref		
8	.1 – 9.6 years	-13.5 [-30.8;3.8]	0.127		8.1 [-6.8;23.1]	0.288	
9	.7 – 10.7 years	1.0 [-16.7;18.8]	0.906		-4.1 [-19.5;11.2]	0.595	
>	10.7	8.62 [-9.4;26.7]	0.351		14.2 [-1.4;29.9]	0.075	

 $^{*}\beta$ coefficients represent the degree of change in cm² of VAT and SAT, respectively, associated with each level of the explanatory variables. Abbreviations: visceral adipose tissue, VAT; subcutaneous adipose tissue, SAT; thymidine nucleoside analog reverse-transcriptase inhibitors, TA; confidence interval, CI.

All the models were adjusted for age, sex, origin, physical activity, smoking, BMI, cumulative time of exposure to TA and/or ddl, and time since discontinuation of TA and/or ddl

Contact: Marco Gelpi, marco.gelpi@regionh.dk