

D. De Francesco¹, C.A. Sabin¹, J. Underwood², M. Gisslen³, F.W. Wit⁴, R.A. van Zoest⁴, J. Schouten⁵, G. Geurtsen⁴, B. Schmand⁴, P. Portegies⁵, P Reiss⁴ and A. Winston² for the COBRA collaboration

¹UCL, UK ²Imperial College London, UK ³University of Gothenburg, Sweden ⁴Amsterdam University Medical Centers (location AMC) and AIGHD, The Netherlands ⁵OLVG Hospital, The Netherlands

Background

Despite persistent reports of cognitive impairment (CI) in people with HIV (PWH) on antiretroviral therapy, limited data exist on the dynamics of change of CI over time.

Aim

To describe changes over 2 years in proportions of PWH and matched HIV-negative controls who are classified as having CI using a commonly-used definition of CI.

Methods

The COBRA cohort

- 123 PWH aged ≥45, on antiretroviral treatment and with plasma HIV RNA <50</p> copies/mL for ≥1 year, recruited at HIV outpatient clinics in Amsterdam and London
- 77 HIV-negative controls aged \geq 45 with similar socio-demographic and lifestyle characteristics, recruited from sexual health centres in Amsterdam and London

The baseline study visit took place between January 2013 and October 2014 with follow-up visits approximately two years after (completed in June 2016).

Assessment of cognitive function

Cognitive function was assessed at both baseline and follow-up visits using a standardised battery covering six domains (Table 1).

Domain	Tests
Attention	WAIS-III letter-number sequencing; Paced auditory se
Executive function	Trail Making Test B; Wisconsin card sorting test
Language	Category (animals and occupations) and letter fluence
Memory	Rey Auditory Verbal Learning; WMS-IV Visual Reprod
Motor function	Grooved pegboard; Finger tapping
Processing speed	Trail Making Test A; WAIS-III digit symbol; WAIS-III syn Stroop colour-word test I and II

Table 1: Neuropsychological tests administered by cognitive domain

Definition of CI and reliable change over time

CI was defined using multivariate normative comparison (MNC)¹: a simultaneous comparison of multiple cognitive test scores against those of a normative control sample, taking the correlations between tests into account.

A statistically reliable change (decline/improvement) over time (a change that is unlikely to have occurred by measurement error, practice effect or regression to the mean) was determined by applying the MNC to the differences between follow-up Tscores and those predicted by baseline T-scores, age and education.

Statistical analysis

Fisher's exact test was used to assess differences in the number of people moving over time from CI to no CI (and vice versa) between PWH and controls.

Acknowledgments

Academisch Medisch Centrum, Universiteit van Amsterdam - Department of Global Health and Amsterdam Institute for Global Health and Development (AIGHD): P. Reiss, J. Schouten, K.W. Kooij, R.A. van Zoest, E. Verheij, S.O. Verboeket, B.C. Elsenga, F.R. Janssen, W. Zikkenheiner. Department of Experimental Immunology: N.A. Kootstra, A.M. Harskamp-Holwerda, I. Maurer, M.M. Mangas Ruiz, A.F. Girigorie. Department of Neurology: P. Portegies, B.A. Schmand, G.J. Geurtsen. Department of Radiology: C.B.L.M. Majoie, M.W.A. Caan, T. Su. Department of Psychiatry: I. Visser. Stichting HIV Monitoring - F.W.N.M. Wit, S. Zaheri, M.M.J. Hillebregt, Y.M.C. Ruijs, D.P. Benschop. Imperial College of Science, Technology and Medicine - Department of Medicine, Division of Infectious Diseases: A. Winston, J. Underwood, L. Tembo, L. McDonald, M. Stott, K. Legg, N. Doyle, C. Kingsley. Department of Medicine, Division of Brain Sciences, The Computational, Cognitive & Clinical Neuroimaging Laboratory: D.J. Sharp, R. Leech, J.H. Cole. University College London - Research Department of Infection and Population Health: C. Sabin, D. De Francesco. GGD Amsterdam/Public Health Service Amsterdam - Cluster of Infectious Diseases, research department: M. Prins, M.F. Schim van der Loeff, J. Berkel, T. Kruijer. Stichting Katholieke Universiteit Nijmegen - D. Burger, M. de Graaff-Teulen. Erasmus Universitair Medisch Centrum Rotterdam - Department of Genetics: J. Hoeijmakers, J. Pothof. Vlaams Instituut voor Biotechnologie - Inflammation research center: C. Libert, S. Dewaele, Universität Konstanz -Department of Biology: A. Bürkle, T. Sindlinger, S. Oehlke. Alma Mater Studiorum Università di Bologna - Department of Experimental, Diagnostic and Specialty Medicine: C Franceschi, P. Garagnani, C. Pirazzini, M. Capri, F. Dall'Olio, M. Chiricolo, S. Salvioli. Göteborgs Universitet - M. Gisslén, D. Fuchs, H. Zetterberg. Università degli studi di Modena e Reggio Emilia -Department of Medical and Surgical Sciences for Children & Adults: G. Guaraldi. e COBRA collaboration has received funding from the European Union's 7th Framework Programme (FP7/2007-2013) under grant agreement n° 305522

VARIABILITY IN COGNITIVE IMPAIRMENT OVER TIME IN PEOPLE WITH HIV AND MATCHED CONTROLS

erial addition test

duction

mbol search;

Results

Median (IQR)	PW (n=12	
Age [years]		55 (50 <i>,</i> 6
Male	114 (939	
Black-African	16 (139	
MSM	103 (849	
Years of education		14 (13, 1
Interval between testing [years]		2.0 (1.7, 2.
Self-reported smoking	Current smoker	35 (289
	Ex-smoker	53 (439
Self-reported alcohol use	Current drinker	96 (789
	Previous drinker	15 (129
Recreational drug use (self-reported)		40 (329
CD4 ⁺ count [cells/µL]		604 (472, 79
Duration of known HIV [years]		15 (9, 1
Nadir CD4 coui	170 (80, 23	

Table 2: Characteristics of study participants at baseline

At baseline, 24 (20%) PWH and 2 (3%) controls had CI (p<0.001). Whilst none of the controls with CI at baseline improved to no CI at follow-up, 11/24 (46%) PWH moved from CI to no CI (p=0.49, Figure 1). Among those with no CI at baseline, 2/99 (2%) PWH and 3/75 (4%) controls moved to having CI (p=0.65).

Statistically reliable change in cognitive function

Among the 12 (10%) PWH and 5 (7%) controls who experienced a significant decline in cognitive function over two years (p=0.42), 6/12 (50%) PWH and 2/5 (40%) controls had no CI at both baseline and follow-up; 1/12 (8%) PWH and 2/5 (40%) controls moved from not having CI to have CI (Figure 2). Moreover, 14 (11%) PWH and 1 (1%) control had a reliable improvement over time (p=0.01), with 4/14 (29%) PWH improving from CI at baseline to no CI at follow-up.

Conclusion

Figure 1: HIV-negative individuals and PWH with and without CI at baseline and follow-up

A substantial proportion of PWH who were classified as having CI initially, did not meet the same criteria for CI after 2 ye Only less than half of both PWH and controls who significantly declined, met the definition of CI at both baseline and fol Linkage of these dynamics of change in cognitive function with biomarker and neuroimaging findings may assist improvi of the underlying pathogenic mechanisms and developing future targeted management approaches of PWH at risk of cognitive decline.

P 420

	Figure 2: Proportion of PWH and					
v-up	controls showing a reliable					
2 (40%)	improv	improvement or decline, or				
1 (20%)	remain	remaining stable over time.				
v-up						
CI						
1 (1%)						
1 (1%)	PWH		HIV-negative			
	De	eclined	Declined			
w-up	St	able	Stable			
CI		nroved	Improved			
0 (0%)		ιριονέα	Improved			
0 (070)						
aarc		Correspo Davide D @: d.def	ondence: e Francesco, MSc rancesco@ucl.ac.uk			
llow-up	Э.	Reference:	letal Determinants of			
ing the understanding		reduced co HIV-1-infec	ognitive performance in cted middle-aged men on			

combination antiretroviral therapy.

AIDS 30.7 (2016): 1027-1038.