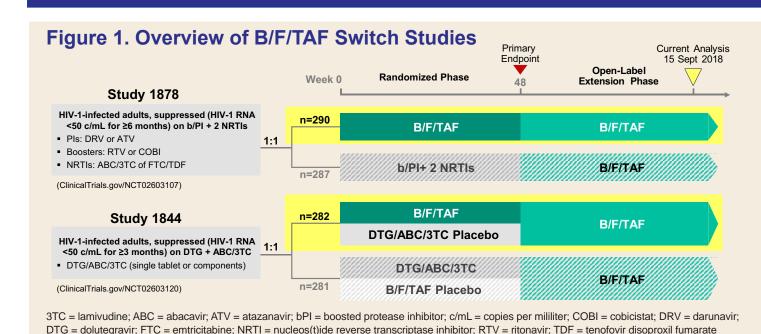
Long-Term B/F/TAF Switch Efficacy in Patients with Archived Pre-Existing Resistance

Poster 0552

Kristen Andreatta, Madeleine Willkom, Ross Martin, Silvia Chang, Hui Liu, Ya-Pei Liu, Hiba Graham, Hal Martin, and Kirsten L. White


GILEAD Gilead Sciences, Inc. 333 Lakeside Drive Foster City, CA 94404 Tel: 800-445-3235 Kristen.Andreatta@gilead.com

Gilead Sciences, Inc., Foster City, CA, USA

Background

- ◆ Bictegravir/emtricitabine/tenofovir alafenamide (B/F/TAF) is approved by the US FDA and EMA for treatment of HIV-1 infection (treatment-naïve and virologically suppressed without resistance)^{1,2}
- B/F/TAF safety, efficacy, and lack of emergent resistance has been demonstrated in controlled clinical trials
- Treatment-naïve adults: 2 Phase 3 studies of 634 participants through 96 weeks³⁻⁶
- Suppressed switch adults: 4 Phase 3 studies of 1090 participants through 48 weeks⁷⁻¹⁰ Suppressed switch adolescents and children: 1 Phase 2/3 study of 100 participants through 48 weeks¹¹
- In studies 1878 and 1844, virologically suppressed participants switched to B/F/TAF from boosted protease inhibitor (b/PI)- or dolutegravir (DTG)-based triple therapy completed the 48 week randomization phase, and then continued B/F/TAF in an open label extension phase
- No HIV-1 genotyping was performed at screening; participants with documented resistance to study drugs or prior virologic failures were excluded
- Historical genotypic data were available for 49% of participants; the remaining 51% had no HIV-1 genotyping or resistance data available at study start
- Proviral DNA genotyping (archive) assays can detect previously undocumented drug resistance in suppressed patients but are insensitive 12-14
- Here, we present resistance analyses and virologic outcomes after >2 years of B/F/TAF treatment in studies 1878 and 1844

Methods

Resistance Assessments at Enrollment

- Historical plasma HIV-1 RNA genotypes were collected but not required for study entry. Documented or suspected resistance to study drugs was excluded if identified prior to randomization
- Previous virologic failure or regimen changes for reasons other than simplification/ modernization/toxicity also was excluded
- Whole blood was collected at baseline for potential proviral DNA archive genotyping

Baseline Genotypic Analyses

- HIV-1 proviral DNA genotyping (GenoSure Archive, Monogram Biosciences) was conducted after enrollment from baseline samples
- All B/F/TAF-treated participants from study 1878 and B/F/TAF-treated participants with longest antiretroviral therapy (ART) histories (pre-2003 or unknown ARV initiation date) from study 1844
- Proviral assay features
- Deep sequencing-based genotyping of integrated HIV-1 proviral DNA for detection of archived drug resistance in patients with inadequate viral loads for routine plasma RNA
- Proviral assay limitations
- Cellular APOBEC-mediated hypermutation may introduce STOP codons and some substitutions associated with drug resistance (E138K, M184I, and M230I in reverse transcriptase; G163R in integrase). Utilization of bioinformatics filters to remove hypermutated deep sequence reads mitigates over-reporting of these substitutions
- Lack of sensitivity to detect resistance previously reported by plasma HIV-1 RNA genotyping; for example, only 43% of previously documented M184V/I was detected by the Archive assay in one recent study¹²

Methods (cont'd)

- Baseline HIV-1 genotypes comprised cumulative data from all historical and proviral genotypes
- **Post-baseline Resistance Analyses**
- Resistance analysis population (RAP)
- Confirmed virologic failure on study drug (two consecutive visits with HIV-1 RNA ≥ 50 c/mL) and HIV-1 RNA ≥ 200 c/mL at the confirmation
- HIV-1 RNA ≥ 200 c/mL at Week 48 or last visit on study drug
- Plasma HIV-1 RNA genotype and phenotype (PhenoSenseGT, GeneSeq IN, and PhenoSense IN, Monogram Biosciences)

Table 1. HIV-1 Drug Resistance Substitutions

Coding region	Resistance Category	Amino Acid Substitutions (based on IAS-USA ¹⁵)	
RT	Primary NNRTI-R	L100I, K101E/P, K103N/S, V106A/M, V108I, E138A/G/K/Q/R, V179L, Y181C/I/V, Y188C/H/L, G190A/E/Q/S, H221Y, P225H, F227C, M230I/L	
	Primary NRTI-R	K65R/E/N, T69 insertions, K70E, L74V/I, Y115F, Q151M, M184V/I TAMs: M41L, D67N, K70R, L210W, T215F/Y, K219E/N/Q/R	
PR	Primary PI-R	D30N, V32I, M46I/L, I47A/V, G48V, I50L/V, I54M/L, Q58E, T74P, L76V, V82A/F/L/S/T, N83D, I84V, N88S, L90M	
IN	Primary INSTI-R	T66I/A/K, E92Q/G, T97A, F121Y, Y143R/H/C, S147G, Q148H/K/R, N155H/S, R263K	
	Secondary INSTI-R	M50I, H51Y, L68I/V, V72A/N/T, L74M, Q95K/R, G118R, S119P/R/T, F121C, A128T, E138A/K, G140A/C/S, P145S, Q146I/K/L/P/R, V151A/L, S153A/F/Y, E157K/Q, G163K/R, E170A	
		transfer inhibitor; NRTI = nucleos(t)ide RT inhibitor; NNRTI = nonnucleoside RT inhibitor; -R = tase; PI = PR inhibitor; PR = protease; TAMs = thymidine analog-associated mutations	

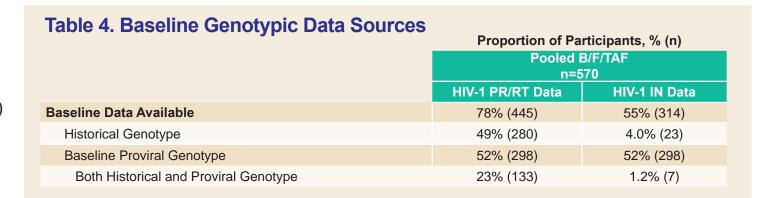
Efficacy Analyses

- Participants included in analysis switched to B/F/TAF on study Day 1 and had ≥1 on-treatment post-baseline HIV-1 RNA measurement
- Outcomes were determined by last available on-treatment HIV-1 RNA through September 15, 2018
- All participants with post-baseline data, including those with early discontinuation, had virologic outcomes determined
- Virologic success (HIV-1 RNA <50 c/mL) or virologic failure (HIV-1 RNA ≥50 c/mL) Statistical comparisons were performed using Fishers' Exact test or Student's
- t-test as appropriate

Results

Table 2. Virologic Outcomes for the Pooled B/F/TAF Group

As of September 15, 2018 the duration of B/F/TAF treatment was median 116 weeks (IQR 108-120 weeks) and 89% of participants completed Week 96


Time of Analysis	Virologic Outcome	Last Available On-treatment HIV-1 RNA	Proportion of Participants, % (n/N) ^a
W1 40	Success	<50 c/mL	98.4% (561/570)
Week 48	Failure	≥50 c/mL	1.6% (9/570) ^{b,c}
September 15, 2018	Success	<50 c/mL	98.4% (561/570)
	Failure	≥50 c/mL	1.6% (9/570) ^{b,d}

- a. 2 randomized and treated participants had no post-baseline visits and were excluded from analysis b. 7 participants discontinued at or before Week 48 with HIV-1 RNA ≥50 c/mL and are failures in both analysis sets 3 had HIV-1 RNA ≥200 c/mL and were in the resistance analysis population with no resistance development
- 4 had HIV-1 RNA <200 c/mL and did not qualify for post-baseline testing c. 2 participants had HIV-1 RNA ≥50 c/mL at Week 48 and resuppressed to <50 c/mL
- d. 2 participants had HIV-1 RNA ≥50 c/mL at last visit before September 15, 2018 and resuppressed to <50 c/mL

able 3. Resistance Development through Curr	ent Analysis
	Proportion of Participants, % (n)
	Pooled B/F/TAF n=570
Resistance Analysis Population (RAP) ^a	0.9% (5)
Developed Resistance	0
Includes all participants analyzed for emergent resistance from baseline through Se	eptember 15, 2018

 High levels of suppression were maintained through Week 48 and current analysis; no treatment-emergent resistance to B/F/TAF has been detected to date

Results (cont'd)

Table 5. Frequencies of Pre-existing NRTI, NNRTI, and PI Resistance **Associated Substitutions at Baseline**

	Proportion of Participants, % (n)			
	Genotype S	Total with Any		
Resistance Class	Historical n=280	Proviral DNA n=298	Baseline Data n=445	
NRTI-R	3.2% (9)	22% (67)	16% (70)	
K65R/N	O ^a	2.0% (6)	1.3% (6)	
M184V/I	O ^a	15% (44)	10% (44)	
Any TAM	3.2% (9)	11% (34)	8.3% (37) ^b	
Other	0	1.7% (5)	1.1% (5) ^c	
NNRTI-R	15% (42)	24% (72)	21% (92)	
Rilpivirine-associatedd	6.1% (17)	14% (41)	11% (50)	
K103N/S	10% (29)	13% (39)	12% (53)	
PI-R	4.3% (12)	9.4% (28)	8.3% (37)	

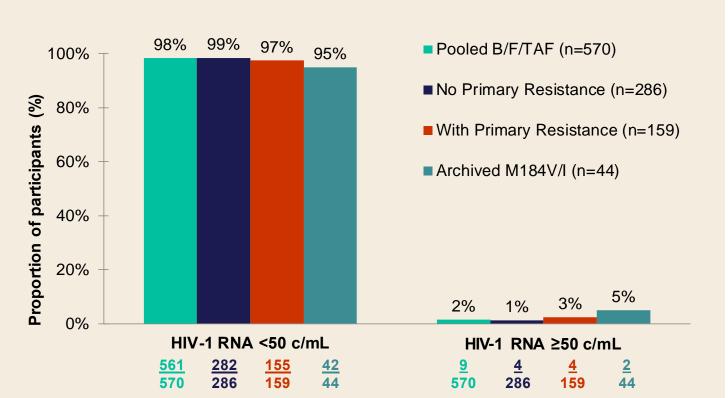

- a. K65N/R and M184V/I by historical genotype would have led to study exclusion TAMs were M41L (n=16), D67N (n=10), K70R (n=17), L210W (n=5), T215F/Y (n=12), and K219E/N/R/Q (n=12)
- c. Other NRTI-R substitutions were L74V (n=2), Y115F (n=3), and Q151M (n=2) Rilpivirine-associated resistance defined as having ≥1 of the following substitutions: L100I, K101E/P, V106A, V108I, E138A/G/K/Q/F V179L, Y181C/I/V Y188L, G190E, H221Y, F227C, or M230I/L

Table 6. Frequencies of Pre-existing INSTI Resistance Associated Substitutions at Baseline

	Proportion of Participants, % (n)			
	Genotyp	Total		
Resistance Class	Historical n=23	Proviral DNA n=298	n=314	
Primary INSTI-R	4.3% (1)	2.0% (6)	1.9% (6)ª	
E92G	0	0.3% (1)	0.3% (1)	
T97A	1.3% (1)	1.3% (4)	1.3% (4)	
S147G	0	0.3% (1)	0.3% (1)	
Secondary INSTI-R	57% (13)	50% (149)	51% (161)	

a. All INSTI-R substitutions, including the 6 primary INSTI-R substitutions, have predicted sensitivity to bictegravir.

Figure 2. Long-term Virologic Outcomes Stratified by Pre-existing **Resistance at Baseline**

Table 7. Long-term Virologic Outcomes by Baseline Resistance Category

Resistance Category	Proportion of Participants with HIV-1 RNA <50 c/mL, % (n/N)	P Value ^a	
All participants	98% (561/570)	-	
No Primary Resistance	99% (282/286)	0.5	
Any Primary Resistance	97% (155/159)	0.5	
NRTI-R	96% (67/70)	0.4	
No NRTI-R	99% (370/375)	0.1	
M184V/I	95% (42/44)	0.2	
No M184V/I	99% (395/401)	0.2	
Any TAM	95% (35/37)	0.4	
No TAM	99% (402/408)	0.1	
NNRTI-R	99% (91/92)	1.0	
No NNRTI-R	98% (346/353)	1.0	
Rilpivirine-associated	98% (49/50)	1.0	
No Rilpivirine-associated	98% (388/395)	1.0	
PI-R	100% (37/37)	4.0	
No PI-R	98% (400/408)	1.0	
Primary INSTI-R	100% (6/6)	1.0	
No Primary INSTI-R	98% (301/308)		
Secondary INSTI-R 98% (157/161)		4.0	
No Secondary INSTI-R	98% (150/153)	1.0	
. P value determined by Fisher's exact test			

 Long-term B/F/TAF efficacy was not affected by pre-existing primary PR, RT, and/or IN resistance at baseline

Table 8. Baseline Characteristics Stratified by M184V/I Detection

		Any Baseline Genotype n=445	
	M184V/I n=44	Wild-type M184 ^a n=401	P value ^b
Mean age, years (range)	51 (29-65)	45 (20-74)	<0.001
Male, % (n)	82% (36)	87% (348)	0.4
Mean CD4 count, cells/μL (range)	645 (217-1415)	716 (124-2582)	0.1
Mean time since ART initiation, years (range)	15 (3-29)	8 (0.3-29)	< 0.001
Mean time on prior regimen, years (range)	7 (0.8–20)	4 (0.3-20)	<0.001
Baseline ARV regimen, % (n)			
DTG/ABC/3TC	5% (2)	42% (167)	<0.001
Boosted PI + 2 NRTIs	95% (42)	58% (234)	<0.001

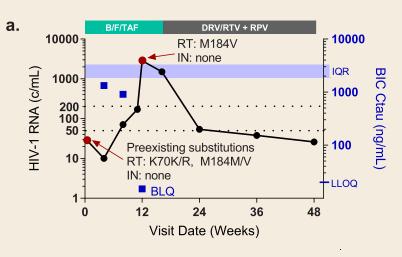
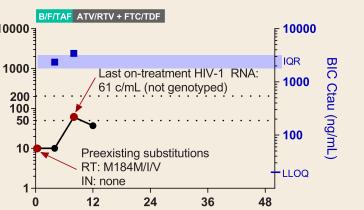

- a. Wild-type M184 by historical and/or proviral baseline genotype b. P values were calculated by Student's t-test (2-tailed) for mean data and Fisher's Exact test for percentage data
- Preexisting M184V/I was associated with greater age, longer time since ART initiation, longer time on prior regimen, and current suppression on a regimen of b/PI + 2 NRTIs

Table 9. Association of M184V/I with Other Primary Resistance Substitutions **Duration of B/F/TAF treatment for participants with M184V/I** was median 111 weeks (IQR 97-119 weeks)


Proportion of Participants, % (n/N) Participants with **HIV-1 RNA** <50 c/mL at Last Visit M184V/I alone 27% (12/44) 92% (11/12) M184V/I + ≥1 primary resistance substitution 73% (32/44) 97% (31/32) M184V/I + NNRTI-R 50% (22/44) 100% (22/22) M184V/I + other NRTI-R 41% (18/44) 94% (17/18) M184V/I + TAMs 34% (15/44) 93% (14/15) M184V/I + PI-R11% (5/44) M184V/I + primary INSTI-R

• M184V/I was frequently detected with other primary resistance substitutions, but was the only resistance detected in 27% of cases

Figure 3. Virologic Profiles of Participants with Archived M184V/I and HIV-1 RNA ≥50 c/mL (n=2)

- Confirmed virologic failure Week 12 HIV-1 RNA 2860 c/mL
- BIC concentration BLQ No de novo resistance development Discontinued B/F/TAF Week 16
- HIV-1 RNA 1510 c/mL
- Participant's decision Adherence through discontinuation
- 76% by pill count

Visit Date (Weeks)

- Discontinued B/F/TAF Week 8 HIV-1 RNA 61 c/mL (too low for resistance testing) Participant's decision
- Withdrew study consent Week 12 Adherence through discontinuation - 71% by pill count

BIC = bictegravir; BLQ = below limit of quantification (BLQ for BIC indicates missing ≥8 consecutive doses); Ctau = concentration at end of dosing interval; IQR = interquartile range (1951 – 3088 ng/mL for BIC Ctau; N = 1193 HIV-1-infected B/F/TAF-treated participants from 4 Phase 3 studies^{1,16}); LLOQ = lower limit of quantification (20 ng/mL for BIC Ctau)

Conclusions

- Virologically suppressed participants switched to B/F/TAF maintained high rates of viral suppression (98% HIV-1 RNA <50 c/mL) in long term follow-up with no treatment emergent resistance observed
- Proviral DNA genotyping detected previously undocumented M184V/I in 10% of participants (n=44)
 - Participants with M184V/I were older, had longer ART durations (mean 15) years, but lowest 3 years), and more frequently switched from boosted-PI
- M184V/I was often linked with other resistance substitutions: 73% had M184V/I with another primary resistance substitution
- In participants with pre-existing drug resistance, B/F/TAF maintained high rates of virologic suppression
- 98% (155/159) of participants with any pre-existing primary NRTI, NNRTI, PI, or INSTI resistance
- 95% (42/44) of participants with archived M184V/I
- ◆ A triple therapy regimen of B/F/TAF may be an effective treatment option for suppressed patients with certain pre-existing resistance including, but not limited to, M184V/I

References

1. BIKTARVY® (bictegravir, emtricitabine, and tenofovir alafenamide) Tablets for 10. Sax PE, et al., IAS (2019) Abstract submitted. Oral Use Prescribing Information. Gilead Sciences, Initial US Approval 2018 Biktarvy: EPAR – Product Information. European Medicines Association, 2018. 12. Perez-Valero I, et al., IAC (2018) Presentation #TUAB0104. . Gallant J, et al., The Lancet (2017) 390(10107): 2063-2072. Sax PE. et al., The Lancet (2017) 390(10107): 2073-2082. Wohl D. et al., ID Week (2018) Presentation #74246.

Stellbrink HJ, et al., HIV Glasgow (2018) Presentation #4185960. Daar ES, et al., The Lancet HIV (2018) 5(7): e347-e356. 8. Molina JM, et al., The Lancet HIV (2018) 5(7): e357-e365.

Presentation #5. 15. Wensing AM, et al., Top Antivir Med (2017) 24:4. 16. Custodio JM et al., CROI (2018) Presentation #34.

11. Gaur AH, et al., CROI (2019) Presentation #2571

13. Andreatta K, et al., HIV Glasgow (2018) Presentation #P298.

14. Thielen A, European Meeting on HIV & Hepatitis (2018)

Acknowledgments

9. Kityo C, et al., CROI (2018) Presentation #500.

We extend our thanks to the participants and their families, study investigators and staff. These studies were funded by Gilead Sciences, Inc.