High percentage of undiagnosed HIV cases within a hyperendemic South African community

Alain Vandormael, ${ }^{1,2,3}$ Tulio de Oliveira, ${ }^{3,4}$ Frank Tanser, ${ }^{1,2,5,6}$ Till Bärnighausen, ${ }^{2,6,7,8}$ and Joshua Herbeck ${ }^{9}$

${ }^{1}$ School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa. ${ }^{2}$ Africa Health Research Institute (AHRI), KwaZulu-Natal, South Africa. ${ }^{3}$ KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal, South Africa. ${ }^{4}$ School of Laboratory Medicine and Medical Sciences, Durban, University of KwaZulu-Natal, South Africa. ${ }^{5}$ Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, South Africa. ${ }^{6}$ Institute of Epidemiology and Health Care, University College London, UK. ${ }^{7}$ Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, USA. ${ }^{8}$ Institute for Public Health, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany. ${ }^{9}$ International Clinical Research Center, Department of Global Health, University of Washington, Seattle, Washington, USA

INTERNATIONAL CLINICAL RESEARCH CENTER UNIVERSITY of WASHINGTON

Background

- Current treatment-as-prevention (TasP) strategies aim to reduce the size of the undiagnosed HIV population to the 10% level (or below) by the year 2020.
- Some mathematical models predict this target can be reached. However, real-world data is critically needed to evaluate progress.
- Using data from a population-based surveillance system, we calculated the percentage of undiagnosed HIV cases in a hyper-endemic South African setting between 2005 and 2016.

Methods

- Following the Seattle method (Fellows et al. 2015. PLoS One), we assumed that the HIV infection occurred either one day after the latest HIV- date (upper bound) or at a random point between the latest HIV- and earliest HIV+ test dates (base case).
- From the distribution of infection times, we used a Poisson process to back-calculate the number undiagnosed infections per year.
- We then divided this result by the estimated number of HIV infections (diagnosed or not) per year.

Results

- 65,473 adults aged 16-55 years were tested for HIV between 2005 and 2016.
- Of these, 38,661 adults had one or more valid HIV tests, of which 12,039 (31.1\%) tested HIV+.
- The bottom panel shows the number tested, the HIV prevalence, and the percentage HIV undiagnosed.

Results

Total Tested			HIV prevalence		HIV undiagnosed	
Year	\mathbf{N}	$\boldsymbol{\%}$	$\mathbf{(9 5 \%} \mathbf{C I})$	$\boldsymbol{\%}$	Upper \%	
2005	29,824	21.68	$(20.83-22.53)$	29.28	47.11	
2006	21,817	21.40	$(20.50-22.30)$	20.77	37.42	
2007	21,759	23.08	$(22.13-24.03)$	19.30	36.26	
2008	24,971	23.65	$(22.69-24.61)$	18.25	35.30	
2009	22,024	25.66	$(24.63-26.69)$	17.99	35.22	
2010	22,227	28.66	$(27.70-29.62)$	17.56	34.24	
2011	20,766	28.07	$(27.09-29.06)$	15.77	32.79	
2012	18527	30.06	$(28.89-31.22)$	16.13	33.89	
2013	20,326	32.17	$(31.11-33.24)$	17.32	35.45	
2014	20,064	34.82	$(33.70-35.94)$	18.10	36.72	
2015	22,024	34.75	$(33.81-35.69)$	19.15	37.82	
2016	22,576	36.59	$(35.69-37.50)$	18.86	37.60	

The percentage of undiagnosed HIV infections between 2005 and 2016 in the study population

Discussion

- Our results show that the percentage of undiagnosed cases was 18.9% in 2016, with an upper bound of 37.6%-much higher than the 10% target set by the Joint United Nations Programme on HIV/AIDS.
- A high level of repeat HIV testing is needed to minimise the time from infection to diagnosis.

[^0]
[^0]: - We thank Jeanette Birnbaum and Martina Morris for assistance with application of the method.

