Sex-Based Differences in Transcriptomic Profiles and HIV Reservoir Correlates Eileen P. Scully¹, Khader Ghneim², Ashish Sharma², Ainsley Lockhart³, Rowena Johnston⁴, Monica Gandhi⁵, Rebecca Hoh⁵, Sharon R. Lewin⁶, Nicolas Chomont⁷, Steven G. Deeks⁵, Rafick-Pierre Sekaly²

¹Johns Hopkins University, Baltimore, MD, USA,²Case Western Reserve University, Cleveland, OH, USA,³Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA,⁴amfAR, New York, NY, USA,⁵University of California San Francisco, San Francisco, CA, USA, ⁶University of Melbourne, Melbourne, VIC, Australia,⁷University of Montreal, Montreal, QC, Canada

Background and Rationale

Biological sex impacts multiple aspects of HIV pathogenesis and the host immune response¹. Women have lower viral loads in the absence of antiretroviral therapy (ART), but progress to AIDS at similar rates². We have previously shown that in the setting of fully suppressive ART, women and men have comparable levels of HIV DNA, but women have lower levels of residual viremia by single copy assay and lower levels of multiplyspliced cell-associated HIV. In the same cohort, we observed lower levels of T cell activation and antigen experience as measured by PD-1 expression in women as compared to men(Scully et al., Abstract 281,CROI 2017, summarized below). Immunologic correlates and gene expression patterns that associate with HIV reservoir size and activity are still under investigation and may highlight potential curative interventions. To identify sex-specific pathways relevant to HIV pathogenesis and cure strategies, we performed transcriptional profiling on this cohort of HIV-positive men and women matched on critical virologic and immunologic factors. Data were analyzed to identify genes and pathways differentially expressed by sex, and gene expression was related to virologic parameters.

Methods

<u>Cohort</u>: Premenopausal women on ART with ≥ 1 year of viral suppression were prospectively enrolled (n=26) and matched with men (n=26) on age, duration of viral suppression, CD4 count/nadir and unusual clinical phenotypes. All participants were enrolled through the SCOPE cohort at UCSF and provided written informed consent.

Measures of HIV reservoir and immune activation Integrated HIV DNA (iDNA) was measured in resting CD4 T cells. Cell associated (CA) multiply spliced (ms) and unspliced (us) HIV RNA in resting CD4 T cells was measured and normalized to 18S RNA input. T cells were phenotyped by flow cytometry.

Transcriptional profiling and analysis: Peripheral blood was collected in PAXgeneTM tubes. RNA was isolated and sequenced with the 3' digital gene expression platform (Broad Institute, Cambridge, MA). Data was preprocessed: trimming (Trimmomatic v 0.33), alignment (STAR v 2.2.2a, sparse indexing, Human genome GRCh38 2015-2016), counting (HTSeq v 0.6.1, output=exon counts, gene counts, transcript counts). Data quality was good, with the majority of samples at 30 million reads. Downstream analysis was limited to gene transcripts from autosomes. Transcripts were analyzed to identify differentially expressed genes (DEGs) and specific enhancement of pathways was assessed with gene set enrichment analysis (GSEA). Transcriptional profiles were regressed to measures of HIV persistence (total and integrated HIV DNA and unspliced and multiply spliced RNA) for each sex. Supervised analysis of specific pathways was done as described.

Cohort characteristics

Cabert Characteristics	Mon	Maman
Cohort Characteristics	Men	Women
Age in years, median (IQR)	43 (33-48)	41 (35-48)
CD4 nadir cells/uL, median (IQR)	270 (131-442)	214 (111-317)
CD4 at sampling cells/uL, median (IQR)	646 (544-825)	677 (530-861)
Duration of infection years, median (IQR)	7 (4.0-11.5)	8 (4.8-14.3)
Duration of viral suppression years, median (IQR)	3.3 (2.1-6.7)	2.8 (1.8-4.3)
Max pretreatment viral load, median (IQR)	4.74(4.4-5.4)	4.61(3.8-5.2)
CMV positive, n (%)	26 (100)	21 (81)
Active HCV infection, n (%)	2 (7.7)	1 (3.8)
IDU, <i>n</i> (%)	3 (12)	5 (19)
Race, <i>n</i> (%)		
White	9 (35)	8 (31)
Black	7 (27)	6 (23)
Hispanic	4 (15)	4 (15)
Asian	2 (8)	3 (12)
Native American	1 (4)	0 ` ´
Mixed/Multiracial/Other	3 (11)	5 (19)

Reservoir comparisons				
HIV reservoir measure	Female fold effect	Confidence Interval	p value	
iHIV DNA	1.39	0.57-3.37	0.47	
SCA (HMMCgag) adjusted for:duration of suppressiontreatment interruptions	0.23	0.08-0.72	0.011	
CA msHIV RNA	0.16	0.05-0.51	0.002	
CA msHIV RNA adjusted for: - CD4 nadir - controller phenotype	0.25	0.09-0.71	0.009	

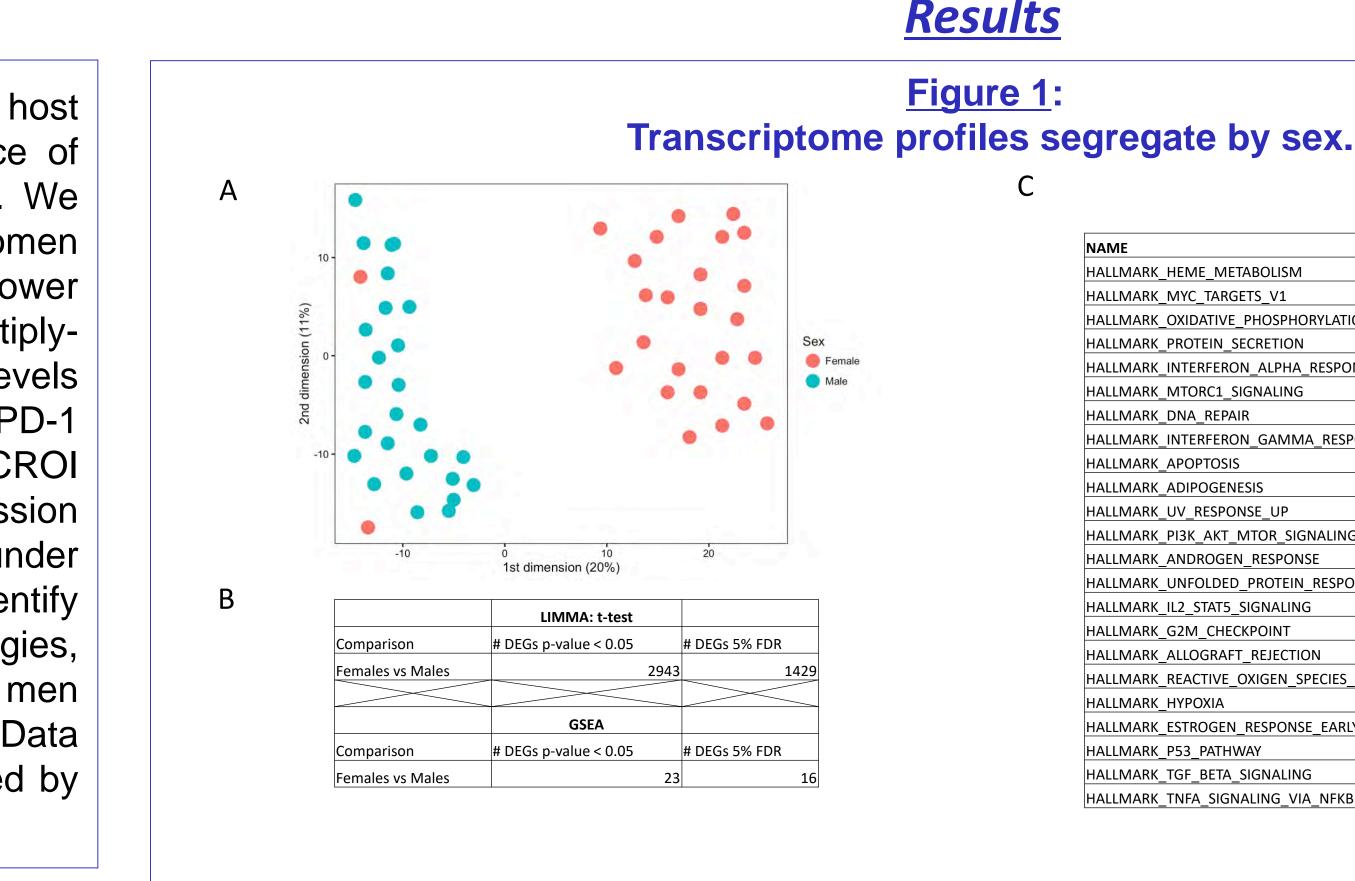
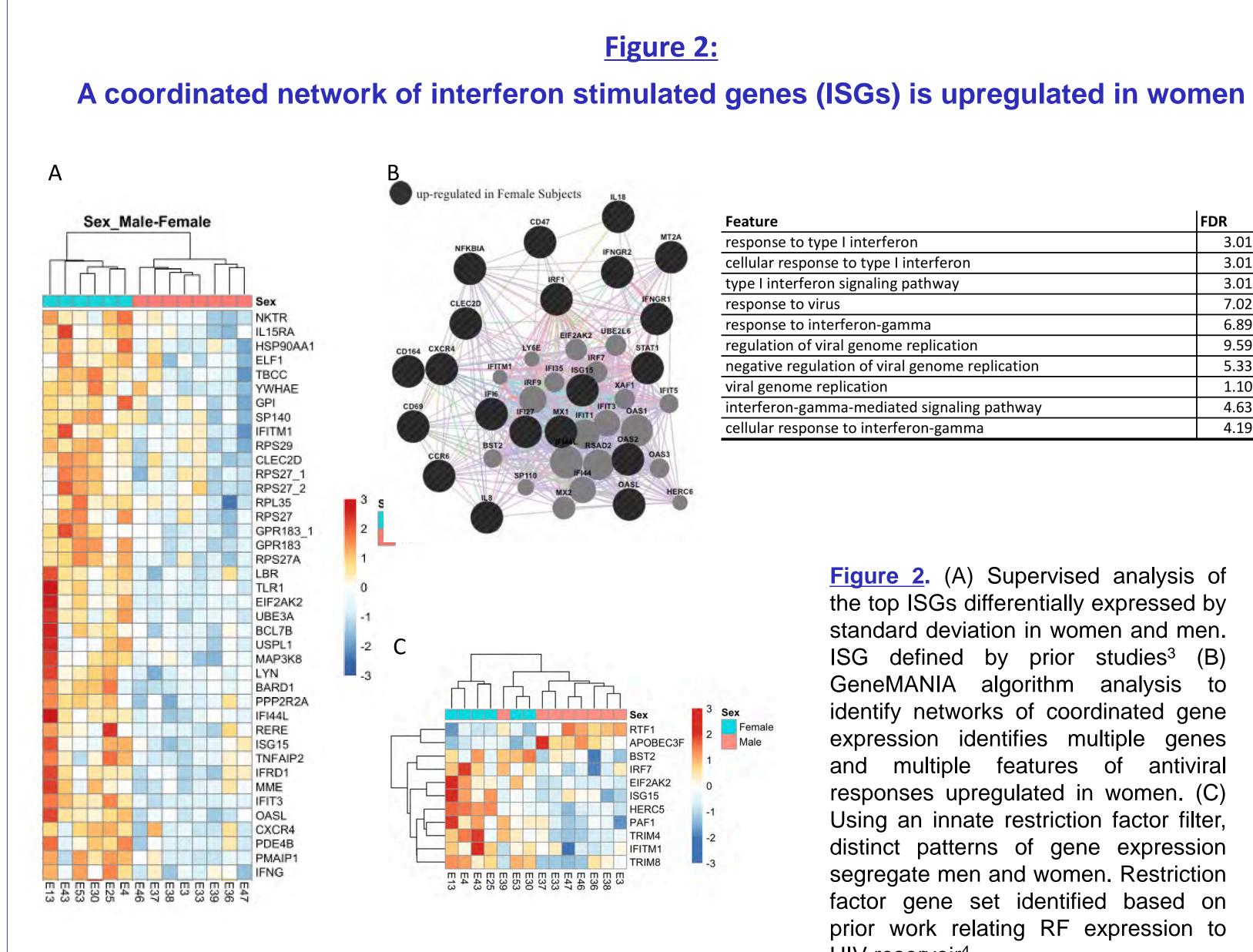



Figure 1. (A) Multidimensional scaling analysis demonstrates that 20% of the variability in gene expression is attributable to sex. (B) 1429 differentially expressed genes were identified and 16 pathways in gene set enrichment analysis were noted to vary by sex at the 5% false discovery rate cut off. (C) Pathways with differential expression nominal p value of <0.05 are shown, all pathways were upregulated in women relative to men.

References

¹Scully, EP Sex Differences in HIV Infection, Curr HIV AIDS Reports, *in press*; ²Gandhi M et al., Does Patient Sex Affect human immunodeficiency levels?, CID, 2002; ³Waddell SJ et al., Dissecting Interferon-Induced Transcriptional Programs in Human Peripheral Blood Cells, PLOS One, 2010; ⁴Abdel-Mohsen M et al., Select host restriction factors are associated with HIV persistence during antiretroviral therapy, AIDS, 2015

	NOM_pval	FDR_qval
ME_METABOLISM	0	0.006
C_TARGETS_V1	0	0.0055
DATIVE_PHOSPHORYLATION	0	0.00533
DTEIN_SECRETION	0	0.00701
ERFERON_ALPHA_RESPONSE	0	0.00781
ORC1_SIGNALING	0	0.00834
A_REPAIR	0	0.0151
ERFERON_GAMMA_RESPONSE	0	0.0203
DPTOSIS	0	0.0298
POGENESIS	0	0.0475
_RESPONSE_UP	0.001	0.0385
AKT_MTOR_SIGNALING	0.002	0.0141
DROGEN_RESPONSE	0.002	0.0312
FOLDED_PROTEIN_RESPONSE	0.004	0.0309
_STAT5_SIGNALING	0.012	0.0817
M_CHECKPOINT	0.016	0.109
OGRAFT_REJECTION	0.017	0.123
CTIVE_OXIGEN_SPECIES_PATHWAY	0.02	0.0248
ροχια	0.024	0.12
ROGEN_RESPONSE_EARLY	0.029	0.15
_PATHWAY	0.034	0.153
_BETA_SIGNALING	0.037	0.0446
A_SIGNALING_VIA_NFKB	0.04	0.151

	FDR
type I interferon	3.01E-30
onse to type I interferon	3.01E-30
eron signaling pathway	3.01E-30
virus	7.02E-26
interferon-gamma	6.89E-17
viral genome replication	9.59E-17
ulation of viral genome replication	5.33E-16
e replication	1.10E-15
amma-mediated signaling pathway	4.63E-15
onse to interferon-gamma	4.19E-14

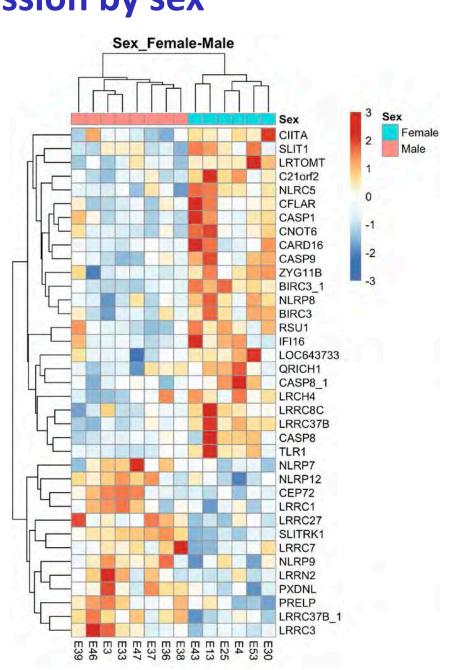
Figure 2. (A) Supervised analysis of the top ISGs differentially expressed by standard deviation in women and men. ISG defined by prior studies³ (B) GeneMANIA algorithm analysis to identify networks of coordinated gene expression identifies multiple genes and multiple features of antiviral responses upregulated in women. (C) Using an innate restriction factor filter, distinct patterns of gene expression segregate men and women. Restriction factor gene set identified based on prior work relating RF expression to HIV reservoir⁴

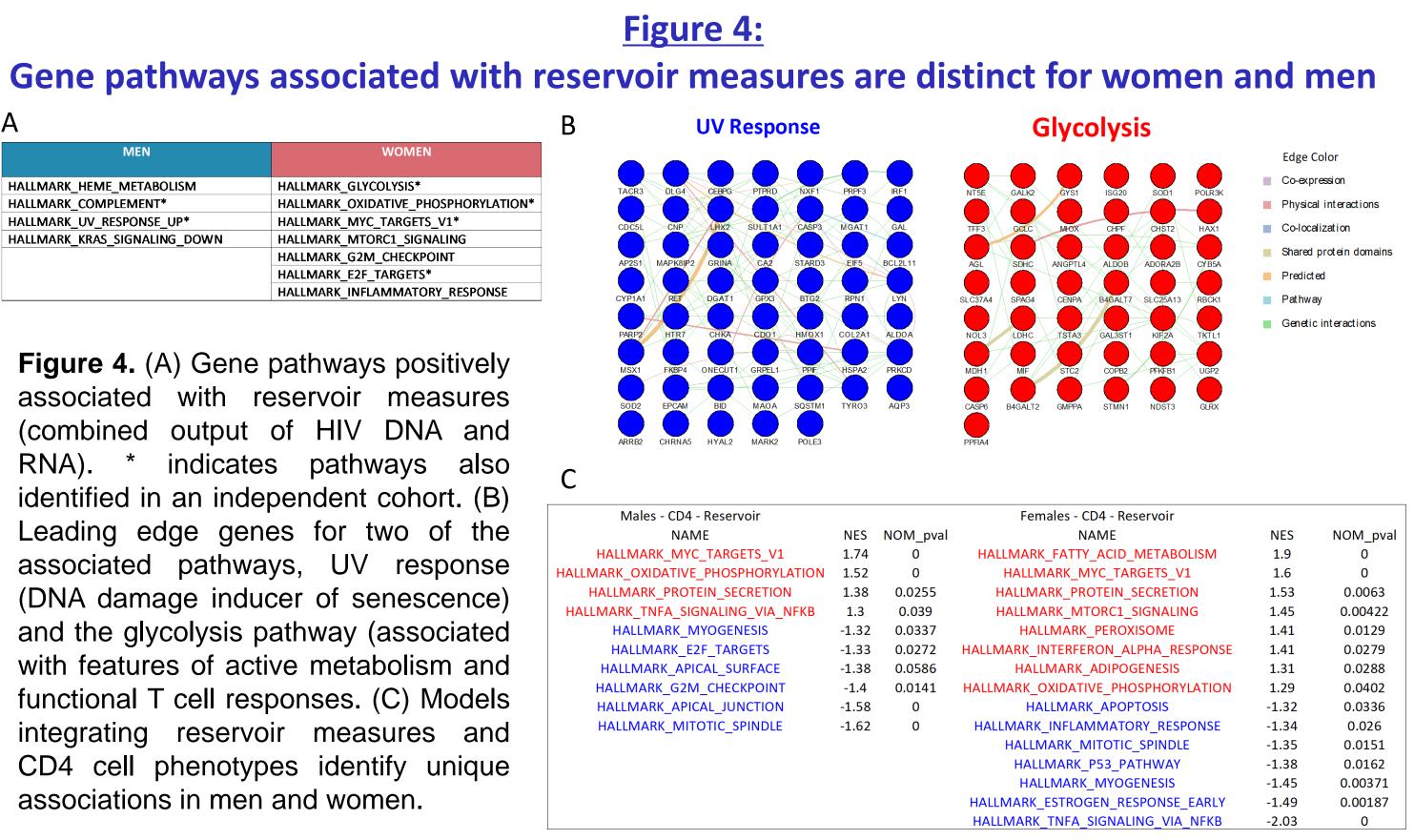
Figure 3: Inflammasome genes show differential expression by sex

Figure 3. Inflammasome components show distinct regulation in men versus women. Among the genes that are differentially expressed is NLR12, previously reported to have a role in modulating NFkappaB signaling. Genes that are considered part PROSITE protein domains related to the inflammasome and then the bioconductor package 'org.Hs.eg.db' was used to map these to gene symbols or entrez gene ids

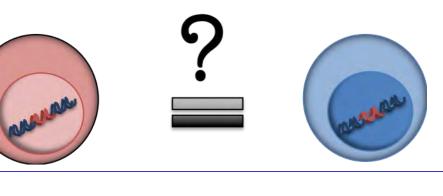
MEN	WOMEN	
HALLMARK_HEME_METABOLISM	HALLMARK_GLYCOLYSIS*	
HALLMARK_COMPLEMENT*	HALLMARK_OXIDATIVE_PHOSPHORYL	
HALLMARK_UV_RESPONSE_UP*	HALLMARK_MYC_TARGETS_V1*	
HALLMARK_KRAS_SIGNALING_DOWN	HALLMARK_MTORC1_SIGNALING	
	HALLMARK_G2M_CHECKPOINT	
	HALLMARK_E2F_TARGETS*	
	HALLMARK_INFLAMMATORY_RESPON	

Figure 4. (A) Gene pathways positively associated with reservoir measures (combined output of HIV DNA and RNA). * indicates pathways also identified in an independent cohort. (B) Leading edge genes for two of the associated pathways, UV response (DNA damage inducer of senescence) and the glycolysis pathway (associated with features of active metabolism and functional T cell responses. (C) Models integrating reservoir measures and CD4 cell phenotypes identify unique associations in men and women.


In a well-matched cohort of HIV-infected ART-treated, virally suppressed women and men, there is sex specific regulation of gene expression. Women show enrichment of antiviral pathways along and differential expression of components of the inflammasome pathway, including some with regulatory function. Sex-specific analysis of HIV reservoir correlates identifies different gene pathways in men and women. Biological sex determines distinct transcriptional patterns that are related to HIV reservoir, with sex-specific implications for cure strategies



The investigators would like to thank the participants for making this study possible. This work was funded by an amfAR ARCHE grant 108842-55-RGRL to EPS, SGD, NC. This work was also supported by the Delaney AIDS Research Enterprise (DARE; AI096109), NIAID (K24 AI069994), the UCSF/Gladstone Institute of Virology & Immunology CFAR (P30 AI027763), and the CFAR Network of Integrated Systems (R24 AI067039). EPS is supported by K08AI116344.



Conclusions

Acknowledgements