

¹St. Jude Children's Research Hospital, Memphis, TN; ²University of South Florida Morsani College of Medicine, Tampa, FL; ³Children's Hospital of Michigan, Detroit; ⁴Be Part Yoluntu Centre, Paarl, South Africa; ⁵Chris Hani Baragwanath Academic Hospital, Soweto, South Africa; ⁶Joint Clinical Research Centre, Kampala, Uganda; ⁷Khon Kaen, Thailand; ⁸Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; ⁹Gilead Sciences, Inc., Foster City, CA

Introduction

- In 2015, ~20% of all new HIV infections in the USA occurred in youth aged 13–24 years¹
- Adherence to antiretroviral therapy can be challenging for adolescents, and the resulting poor adherence can increase their risk of drug resistance and virologic failure²⁻⁴
- Bictegravir (BIC [B]) is a novel, unboosted integrase strand transfer inhibitor (INSTI), with a high genetic barrier to resistance and low potential for drug-drug interactions^{5,6}
- BIC has been coformulated with emtricitabine (FTC [F]) and tenofovir alafenamide (TAF) into a once-daily, single-tablet regimen (B/F/TAF) of small tablet size, which can be taken without regard to food
- This is the 1st study to report the pharmacokinetics (PK), safety, and efficacy of B/F/TAF in a pediatric population

Objectives

- **Primary:** to determine the plasma PK of BIC, and evaluate the safety and tolerability of B/F/TAF through 24 wk of treatment in HIV-1-infected adolescents
- **Secondary:** to evaluate the safety and tolerability of B/F/TAF through 48 wk, and its antiviral activity at 24 and 48 wk in HIV-1-infected adolescents

Methods

- Phase 2/3, open-label, multicenter, multicohort, single-arm study in HIV-1-infected, virologically suppressed adolescents (NCT02881320)
- Key inclusion criteria:
- Aged 12–<18 y; weight ≥35 kg</p>
- HIV-1 RNA <50 copies/mL for ≥6 mo</p>
- CD4 count ≥200 cells/µL
- Estimated glomerular filtration rate (eGFR; Schwartz formula) ≥90 mL/min/ 1.73 m²
- Safety assessments: adverse events (AEs) and clinical laboratory abnormalities
- Efficacy assessments: HIV-1 RNA viral load and CD4 cell count
- PK assessment: steady-state plasma PK parameters calculated for BIC, FTC, and TAF

Bictegravir/FTC/TAF Single-Tablet Regimen in Adolescents: Week-24 Results Aditya H. Gaur,¹ Carina Rodriguez,² Eric J. McGrath,³ Elizabeth Hellstrom,⁴ Afaaf Liberty,⁵ Eva Natukunda,⁶ Pope Kosalaraksa,⁷ Kulkanya Chokephaibulkit,⁸ Sophia R. Majeed,⁹ Amy Coluci,⁹ Danielle Porter,⁹ Pamela Wong,⁹ Erin Quirk,⁹ Hiba Graham,⁹ Cheryl Pikora⁹

Results

Disposition

- Screened: N=25
- Enrolled: N=24
- No study drug discontinuations (D/C) through Week 24
- Median (quartile [Q] 1, Q3) exposure to study drug: 25.6 wk (24.7, 26.6)

Baseline Cha	racteristics	
		B/F/TAF N=24
Median age, y (range)		15 (12–17)
Median weight, kg (Q1, Q3)		48.9 (42.2, 56.4)
Female, n (%)		19 (79)
	Asian	9 (39)
Race, n (%)	Black	12 (52)
	White	1 (4)
	Other	2 (8)
	South Africa	9 (38)
Country, n (%)	Thailand	9 (38)
	USA	6 (25)
HIV-1 RNA <50 copies/mL, n (%)		24 (100)
Mean CD4 cell count, /uL (Q1, Q3)		708 (553, 893)
Median eGFR, mL/min/1.73 m ² (Q1, Q3)		142.5 (131.5, 153.5)
Mode of transmission, n (%)	Vertical	21 (88)
	Unknown	2 (8)
	Horizontal	1 (4)

Intensive Pharmacokinetic Data

	PK Parameter*	Cohort 1 12 <18 y; 35 kg N=24	B/F/TAF-Treated Adults N=1193 [†]	Adolescent/Adult GMR% (90% CI)
	AUC _{tau} , h-ng/mL	109,668 (31)	102,001 (27)	107 (97, 118)
BIC	C _{max} , ng/mL	8087 (30)	6146 (23)	130 (119, 143)
	C _{tau} , ng/mL	2327 (49)	2610 (35)	86 (74, 100)
FTC	AUC _{tau} , h-ng/mL	13,579 (22)	12,294 (29)	113 (102, 124)
	C _{max} , ng/mL	2689 (34)	2127 (35)	127 (111, 145)
	C _{tau} , ng/mL	64 (25)	96 (37)	69 (62, 78)
TAF	AUC _{tau} , h•ng/mL	271 (50)	229 (63)	125 (102, 153)
	C _{max} , ng/mL	262 (45)	277 (62)	101 (80, 128)

confidence interval; C_{max}, maximum concentration; C_{tau}, trough concentration; GMR, geometric mean ratio.

- Similar BIC exposures were observed in adolescents and adults
- Exposures of FTC and TAF were within the safe and efficacious ranges of Mean change in CD4 cell count at Week 24: +53 cells/µL (standard deviation 197.0 historical data in adults and adolescents following administration of approved F/TAF-containing products^{7,8} No participants met the criteria for resistance analysis

verall Safety	B/F/TAF
Participants, n (%)	N=24
Any grade AE	15 (63)
Grade 3/4 AE	0
AE related to study drug	1 (4)
Serious AE	1 (4)
AE leading to study drug D/C	0
Death	0

- Most common AEs were upper respiratory tract infection (n=5 [21%]), and abdominal pain, body tinea, diarrhea, headache, influenza, pharyngitis, and rhinitis allergic (each n=2 [8%])
- None of these AEs were considered related to study drug
- No other AE occurred in >1 participant
- All AEs were mild—moderate in severity
- I participant had an AE considered related to study drug: Grade 1 vomiting that began on Day 1 and resolved on the same day without dose adjustment or suspension of B/F/TAF
- I participant had a serious AE: Grade 2 abdominal pain that began on Day 124 and resolved on Day 132, was not related to study drug, and resolved without dose adjustment or suspension of B/F/TAF
- Most common Grade 3/4 laboratory abnormality was hematuria (n=4 [19%]) – All 4 participants were female (aged 13–16 y) and remained on study drug: 3 were reported to have menses at the time of hematuria
- No other Grade 3/4 laboratory abnormality was reported

Estimated Glomerular Filtration Rate (Schwartz)

- Median changes in eGFR ranged from -8.0 to -14.0 mL/min/1.73 m² between Weeks 2 and 24
- Changes in eGFR in female adolescents were:
- Not considered to be clinically significant
- Consistent with Phase 3 adult data, and the known effect of BIC on organic cation transporter 2 and multidrug and toxin extrusion protein 1, with no effect on actual GFR

 Maintenance of virologic suppression at Week 24: HIV-1 RNA <50 copies/ml in all 24 participants (100%)

Participant-Reported Palatability and Acceptability

- All 24 participants reported B/F/TAF was palatable, and its shape and size were acceptable
- ◆ 21 participants (88%) were ≥95% adherent through Week 24

INSTI-Containing Single-Tablet Regimen Size Comparisons*

Conclusions

- ♦ In HIV-1–infected adolescents (aged 12–<18 y; weight \geq 35 kg):
- B/F/TAF was well tolerated
- All AEs were mild—moderate, with only 1 AE considered related to B/F/TAF and only 1 serious AE
- There were no deaths, pregnancies, or AEs that led to D/C
- B/F/TAF demonstrated high rates of maintained virologic suppression
- Exposures of BIC, FTC, and TAF were consistent with the ranges of exposures observed in adults in Phase 3 trials of B/F/TAF
- Efficacy and safety were consistent with results from Phase 3 trials of B/F/TAF in adults, which showed high proportions with viral suppression and no resistance
- These data support further pediatric studies of B/F/TAF, which may be an important unboosted INSTI option for HIV-infected adolescents and children due to high barrier to resistance, small tablet size, low potential for drug-drug interactions, and lack of food requirement

References

. Centers for Disease Control and Prevention. HIV Surveillance Report, 2015. http://www.cdc.gov/hiv/library/reports/hiv-surveillance.html; 2. AIDSinf http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf; 3. AIDSinfo. https://aidsinfo.nih.gov/ContentFiles/PediatricGuidelines.pd 4. Reisner SL, et al. Top HIV Med 2009;17:14-25; 5. Gallant JE, et al. J Acquir Immune Defic Syndr 2017;75:61-6; 6. Tsiang M, et al. Antimicrob Agents Chemother 2016.60:7086-97; 7. Descovy [package insert]. Foster City, CA: Gilead Sciences, Inc., April 2016; 8. Genvoya [package insert]. Foster City, CA: Gilead Sciences, Inc., April 2016

Acknowledgments

We extend our thanks to the participants, their families, and all participating study investigators and staff: **South Africa:** L Hellstrom, J Fourie, M Cotton; **Thailand:** P Kosalaraksa, T Bunupuradah, K Chokephaibulkit; **USA:** A Gaur, C Rodriguez. This study was funded by Gilead Sciences, Inc.