

D. De Francesco¹, A. Winston², J.Y. Choi³, R.A. van Zoest⁴, J. Underwood², J. Sch and C.A. Sabin¹ for the ComorBidity in Relation to AIDS (COBRA) Collaboration ¹UCL, UK ²Imperial College London, UK ³Yonsei University College of M

⁴Academic Medical Center, University of Amsterdam, The Netherlands ⁵Korea Universi

BACKGROUND

HIV-associated cognitive impairment (CI) remains relevant in people liv (PLWH) treated with combination antiretroviral therapy (cART). Howev for CI may differ in populations of PLWH of different ethnicity.

AIMS

- To compare the prevalence and determinants of CI in a Northern European and a Korean cohort of PLWH.
- To assess the ability of individual cognitive tests to discriminate between those with and without CI.

METHODS

<u>The COBRA collaboration (the Netherlands and the UK)</u>

The COBRA cohort recruited **134 PLWH** aged ≥45 years, on cART and with a plasma HIV viral load <50 copies/mL for ≥12 months, from HIV outpatient clinics in Amsterdam (Netherlands) and London (UK). Exclusion criteria included current depression, history of neurological diseases and substance abuse.

<u>The Korean NeuroAIDS project (South Korea)</u>

194 PLWH aged ≥18 years (90% on cART, 79% with HIV RNA <50 copies/mL) were recruited from two hospitals in Seoul (South Korea). Exclusion criteria were current psychotic disorder, history of neurological diseases, central nervous system infection and substance abuse.

Neuropsychological assessment

Cognitive performances were assessed using a comparable battery covering 6 cognitive domains [1,2]. Scores were standardised into T-scores (mean=50, standard deviation=10) using population-specific normative scores and averaged to obtain an overall score where higher scores indicate better cognitive function. CI was defined by an overall T-score \leq 45 (i.e. \geq 0.5 standard deviations below the mean normative score).

Statistical analysis

- Determinants of overall cognitive function were evaluated separately in the two cohorts using linear regression. In univariate analysis factors were considered one at the time. Those factors that were associated with cognitive function in univariate analyses (p≤0.05) were selected for simultaneous inclusion in a multivariable model.
- The discriminative ability of individual cognitive tests to detect CI was assessed using the area under the receiver operating characteristic (AUROC) curve.

REFERENCES

- 1. Underwood, Jonathan, et al. "Gray and white matter abnormalities in treated human immunodeficiency virus disease and their relationship to cognitive function." Clinical Infectious Diseases 65.3 (2017): 422-432.
- 2. Ku, Nam Su, et al. "HIV-associated neurocognitive disorder in HIV-infected Koreans: the Korean NeuroAIDS Project." HIV *medicine* 15.8 (2014): 470-477.

ACKNOWLEDGEMENTS

Academisch Medisch Centrum, Universiteit van Amsterdam - Department of Global Health and Amsterdam Institute for Global Health and Development (AIGHD): P. Reiss, J. Schouten, K.W. Kooij, R.A. van Zoest, E. Verheij, S.O. Verboeket, B.C. Elsenga, F.R. Janssen, W. Zikkenheiner. Department of Experimental Immunology: N.A. Kootstra, A.M. Harskamp-Holwerda, I. Maurer, M.M. Mangas Ruiz, A.F. Girigorie. Department of Neurology: P. Portegies, B.A. Schmand, G.J. Geurtsen. Department of Radiology: C.B.L.M. Majoie, M.W.A. Caan, T. Su. Department of Psychiatry: I. Visser. Stichting HIV Monitoring - F.W.N.M. Wit, S. Zaheri, M.M.J. Hillebregt, Y.M.C. Ruijs, D.P. Benschop. Imperial College of Science, Technology and Medicine - Department of Medicine, Division of Infectious Diseases: A. Winston, J. Underwood, L. Tembo, L. McDonald, M. Stott, K. Legg, N. Doyle, C. Kingsley. Department of Medicine, Division of Brain Sciences, The Computational, Cognitive & Clinical Neuroimaging Laboratory: D.J. Sharp, R. Leech, J.H. Cole. University College London - Research Department of Infection and Population Health: C. Sabin, D. De Francesco. GGD Amsterdam/Public Health Service Amsterdam - Cluster of Infectious Diseases, research department: M. Prins, M.F. Schim van der Loeff, J. Berkel, T. Kruijer. Stichting Katholieke Universiteit Nijmegen - D. Burger, M. de Graaff-Teulen. Erasmus Universitair Medisch Centrum Rotterdam -Department of Genetics: J. Hoeijmakers, J. Pothof. Vlaams Instituut voor Biotechnologie - Inflammation research center: C. Libert, S. Dewaele. Universität Konstanz - Department of Biology: A. Bürkle, T. Sindlinger, S. Oehlke. Alma Mater Studiorum Università di Bologna - Department of Experimental, Diagnostic and Specialty Medicine: C. Franceschi, P. Garagnani, C. Pirazzini, M. Capri, F. Dall'Olio, M. Chiricolo, S. Salvioli. Göteborgs Universitet - M. Gisslén, D. Fuchs, H. Zetterberg. Università degli studi di Modena e Reggio Emilia - Department of Medical and Surgical Sciences for Children & Adults: G. Guaraldi. The COBRA collaboration has received funding from the European Union's 7th Framework Programme (FP7/2007-2013) under grant agreement n° 305522. The Korean NeuroAIDS project was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number : HI16C1705).

DETERMINANTS OF COGNITIVE FUNCTION DIFFER IN A EURO

ving	g with	HIV
ver,	risk fa	actors

RESULTS

Characteristics of the two cohorts (Table 1)

Median (IQR) or n (%)	COBRA (n=134)	NeuroAIDS (n=194)	p
Age [years]	56 (51 <i>,</i> 62)	45 (37 <i>,</i> 52)	<0.01
Male	125 (93%)	182 (94%)	0.85
Black-African	16 (12%)	0 (0%)	< 0.01
Likely route of HIV transmission			<0.01
MSM	115 (86%)	102 (53%)	
Heterosexual sex	15 (11%)	53 (27%)	
Years of education	14 (13, 16)	13 (12, 16)	0.23
BMI [kg/m ²]	24.6 (22.6, 27.4)	22.5 (20.5, 24.4)	< 0.01
Anemia	11 (8%)	37 (19%)	<0.01
Hepatitis B co-infection	7 (3%)	9 (5%)	0.81
Hepatitis C co-infection	5 (2%)	6 (4%)	0.75
CD4 count [cells/µL]	618 (472-806)	477 (323, 607)	<0.01
CD4:CD8 ratio	0.84 (0.60, 1.12)	0.55 (0.35, 0.85)	<0.01
Time since HIV diagnosis [years]	15.0 (9.1, 20.0)	5.8 (2.3, 8.2)	<0.01
Prior AIDS	42 (31%)	55 (28%)	0.56
Nadir CD4 count [cells/µL]	180 (90, 250)	169 (69 <i>,</i> 273)	0.78

Table 1 Characteristics of study participants [MSM: men who have sex with men; IQR: interquartile range; BMI: body-mass index; Anemia: haemoglobin ≤13 g/dL].

Prevalence of CI

The prevalence of CI was similar in the two cohorts: 18.8% in COBRA PLWH and 18.0% in NeuroAIDS PLWH (p=0.86). The median (IQR) overall cognitive score was 51.2 (46.0, 54.8) and 50.7 (47.1, 54.0), respectively (p=0.21).

<u>Determinants of cognitive function – univariate analysis (Table 2)</u>

In univariate analysis, anemia was significantly associated with poorer overall cognitive scores in both COBRA and NeuroAIDS PLWH while few factors were associated in one but not the other cohort (Table 2).

Diak factor	COBRA (n=134)		NeuroAIDS (n=194)		
RISK factor	coefficient (95% CI)	р	coefficient (95% CI)	р	
Age [per 10 years]	0.3 (-1.2, 1.7)	0.73	1.2 (0.6, 1.6)	<0.01	
Male vs Female	6.1 (1.9, 10.3)	0.01	-1.4 (-3.8, 1.1)	0.28	
Black-African vs white	-10.9 (-13.6, -8.1)	0.01	N/A	N/A	
Likely route of HIV transmission					
Heterosexual vs MSM	-5.8 (-9.1, -2.5)	<0.01	-0.4 (-1.8, 1.0)	0.54	
Other vs MSM	-1.8 (-7.9, 4.3)	0.56	-0.2 (-1.9, 1.7)	0.82	
Years of education [per year]	0.2 (-0.2, 0.6)	0.37	0.2 (0.04, 0.4)	0.01	
BMI [per 5 kg/m2]	-1.3 (-2.6, -0.04)	0.04	0.4 (-0.4, 1.2)	0.43	
Anemia (yes vs no)	-5.0 (-8.9 <i>,</i> -1.2)	0.01	-1.5 (-2.9 <i>,</i> -0.03)	0.05	
CD4 count [per 100 cells/µL]	0.2 (-0.4, 0.7)	0.55	-0.03 (-0.3, 0.2)	0.80	
CD4:CD8 ratio	-0.2 (-2.4, 2.0)	0.84	0.2 (-0.6, 1.1)	0.84	
Time since HIV diagnosis [per 10 years]	0.1 (-0.03, 0.2)	0.12	0.1 (-0.1, 0.3)	0.43	
Prior AIDS (yes vs no)	-1.9 (-4.2, 0.4)	0.11	-0.2 (-1.5, 1.1)	0.75	
Nadir CD4 count [per 100 cells/µL]	0.5 (-0.2, 1.3)	0.15	-0.1 (-0.6, 0.3)	0.55	
Table 7 Estimates from univariate regression (and factor at the time) in the two schorts					

Table Z Estimates from univariate regression (one factor at the time) in the two conorts.

and the Kore	<u<sup>3, W.J. Kim⁵ an NeuroAID</u<sup>	°, P. Reis S Projec	t P 404
edicine, South ty College of M	Korea edicine, South	Korea	Correspondence Davide De Francesco, MSc @: d.defrancesco@ucl.ac.uk
Determinants of o	cognitive function -	- multivaria	te analysis (Figure 1)
In multivariate analys	sis, being of black-Africa	an descent wa	s the main determinant of
, cognitive function an	nong COBRA PLWH with	n on average 1	1.0 (7.6, 14.4) point lower
scores compared to F	LWH of white ethnicity	∕ (p<0.01).	
<pre>In the NeuroAIDS con <0.01), anemia was t marginal statistical sig</pre>	ort, other than age and he main risk factor for (gnificance (p=0.12).	d years of edu CI; this factor N	cation (both p-values was, however, of only
<pre>In the NeuroAIDS con <0.01), anemia was t marginal statistical sig</pre>	he main risk factor for (gnificance (p=0.12).	d years of edu CI; this factor N	cation (both p-values was, however, of only
In the NeuroAIDS con <0.01), anemia was t marginal statistical sig Male vs Female –	he main risk factor for (gnificance (p=0.12).	d years of edu CI; this factor v	cation (both p-values was, however, of only 0.3 (0.2, 04) – p<0.01
In the NeuroAIDS con <0.01), anemia was t marginal statistical sig Male vs Female – Black-African vs white –	ort, other than age and he main risk factor for (gnificance (p=0.12). 0.7 (-6.7, 5,3) – p=0.82 0 (-14.4, -7.6) – p<0.01	d years of edu CI; this factor v ge [per 10 years] -	cation (both p-values was, however, of only 0.3 (0.2, 0, 4) – p<0.01
In the NeuroAIDS cor <0.01), anemia was t marginal statistical sig Male vs Female – Black-African vs white – Anemia (yes vs no) –	Nort, other than age and he main risk factor for (gnificance (p=0.12). 0.7 (-6.7, 5,3) – p=0.82 0 (-14.4, -7.6) – p<0.01 0.2 (-4.4, 4.0) – p=0.93 Ye	d years of edu CI; this factor v ge [per 10 years] -	cation (both p-values was, however, of only 0.3 (0.2, 0 4) – p<0.01 0.4 (0.2, 0.6) – p<0.01
In the NeuroAIDS con <0.01), anemia was t marginal statistical sig Male vs Female - Black-African vs white - Anemia (yes vs no) - HIV transmission route	fort, other than age and he main risk factor for (gnificance (p=0.12). 0.7 (-6.7, 5.3) - p=0.82 0 (-14.4, -7.6) - p<0.01 0.2 (-4.4, 4.0) - p=0.93 Ye 0.4 (-4.3, 5.1) - p=0.86	d years of edu CI; this factor v ge [per 10 years] - ears of education [per 1 year] ⁻	cation (both p-values was, however, of only 0.3 (0.2, 0, 4) – p<0.01 0.4 (0.2, 0, 6) – p<0.01
In the NeuroAIDS cor <0.01), anemia was t marginal statistical sig Male vs Female – Black-African vs white – Anemia (yes vs no) – HIV transmission route Heterosexual vs MSM –	nort, other than age and he main risk factor for (gnificance (p=0.12). 0.7 (-6.7, 5.3) - p=0.82 0 (-14.4, -7.6) - p<0.01 0.2 (-4.4, 4.0) - p=0.93 Ye 0.4 (-4.3, 5.1) - p=0.86 0.5 (-5.0, 5.9) - p=0.87	d years of edu Cl; this factor v ge [per 10 years] - ears of education [per 1 year]	cation (both p-values was, however, of only 0.3 (0.2, 0, 4) - p<0.01 0.4 (0.2, 0, 6) - p<0.01
In the NeuroAIDS cor <0.01), anemia was t marginal statistical sig Male vs Female – Black-African vs white – Anemia (yes vs no) – HIV transmission route Heterosexual vs MSM – Other vs MSM –	fort, other than age and he main risk factor for (gnificance (p=0.12). 0.7 (-6.7, 5, 3) - p=0.82 0 (-14.4, -7.6) - p<0.01 0.2 (-4.4, 4.0) - p=0.93 Ye 0.4 (-4.3, 5.1) - p=0.86 0.5 (-5.0, 5, 9) - p=0.87	d years of edu CI; this factor v ge [per 10 years] - ears of education [per 1 year]	cation (both p-values was, however, of only 0.3 (0.2, 0.4) - p < 0.01 0.4 (0.2, 0.6) - p < 0.01
In the NeuroAIDS cor <0.01), anemia was t marginal statistical sig Male vs Female – Black-African vs white – Anemia (yes vs no) – HIV transmission route Heterosexual vs MSM – Other vs MSM – BMI [per 5 kg/m ²] –	<pre>nort, other than age and he main risk factor for (gnificance (p=0.12).</pre>	d years of edu CI; this factor w ge [per 10 years] - ears of education [per 1 year] ⁻ Anemia (yes vs no) ⁻	cation (both p-values was, however, of only 0.3 (0.2, 0, 4) – p<0.01 0.4 (0.2, 0.6) – p<0.01 -1.1 (-2.6, 0.3) – p=0.12

<u>Screening for CI (Table 4)</u>

The discriminative ability of CI screening was highest for tests of attention (AUROC of 0.81 to 0.84) and executive function (0.80-0.88) in COBRA PLWH and for tests of processing speed (0.73-0.80) and motor function (AUROC=0.78) in NeuroAIDS PLWH.

Domain	Test	COBRA (n=134)	NeuroAIDS (n=194)
Attention	PASAT 3	0.84 (0.79, 0.90)	N/A
	WAIS-III LN sequencing (C)/Digit span (K)	0.81 (0.75, 0.87)	0.75 (0.66, 0.83)
Exec. function	Trail Making Test-B	0.88 (0.82, 0.93)	0.71 (0.62, 0.80)
	Wisconsin CST - No of total errors	0.81 (0.71, 0.90)	0.74 (0.65 <i>,</i> 0.83)
	Wisconsin CST - No of perseverative errors	0.80 (0.71, 0.89)	0.70 (0.61, 0.79)
	Wisconsin CST - No of perseverative resp.	0.81 (0.73 <i>,</i> 0.89)	0.73 (0.65 <i>,</i> 0.82)
Language	Category Fluency - Animals	0.82 (0.74, 0.91)	N/A
	Category Fluency - Occupations	0.81 (0.71, 0.90)	N/A
	Letter Fluency (C)/WAIS III Vocabulary (K)	0.68 (0.57, 0.78)	0.78 (0.71 <i>,</i> 0.84)
Memory	RAVL - Recall	0.72 (0.63, 0.82)	0.73 (0.65, 0.80)
	RAVL - Delayed recall	0.74 (0.64, 0.84)	0.73 (0.66, 0.80)
	WMS-IV Visual Reproduction - Recall	0.73 (0.63, 0.83)	0.73 (0.64, 0.81)
	WMS-IV Visual Reproduction - Delayed R	0.76 (0.69, 0.84)	0.71 (0.63 <i>,</i> 0.80)
Motor function	Grooved pegboard	0.67 (0.57, 0.77)	0.78 (0.71, 0.86)
	Finger tapping	0.68 (0.58, 0.79)	N/A
Processing speed	Trail Making Test-A	0.73 (0.63, 0.82)	0.73 (0.65, 0.81)
	WAIS-III Digit Symbol	0.82 (0.72, 0.91)	0.80 (0.73, 0.86)
	Stroop colour-word test	0.71 (0.64, 0.78)	N/A

Table 4 AUROC (95% CI) of individual cognitive tests for CI screening

CONCLUSIONS

- when comparing CI rates in different geographic regions.
- from different geographic regions.

Despite similar rates of CI in two cohorts of PLWH from different geographic regions, determinants of cognitive performance differ considerably with ethnicity and anaemia being important determinants in one but not the other cohort. Differences in ethnicity and other diseases should be taken into consideration

Also cognitive domains mainly affected by HIV-associated CI may vary in PLWH