An easy-to-use Paediatric Dosing Tool - Because one mg/kg dose does NOT fit all.

¹Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa; ²Clinton Health Access Initiative, New York, USA, ³Program for HIV Prevention and Treatment, Chiang Mai, Thailand, ⁴Boston Medical Center, Boston, MA, ⁵University of California San Diego, La Jolla, CA, ⁶World Health Organization, Geneva, Switzerland

- Allometric scaling [1] describes the **nonlinear** effect of body size on PK

"best-guess", possibly because of the difficulty due to the non-linearity.

evaluate paediatric dosing regimens.

Paolo Denti¹, Nandita Sugandhi², Tim Cressey³, Mark Mirochnick⁴, Edmund Capparelli⁵, Martina Penazzato⁶,

on behalf of the Paediatric ARV Working Group

Limitations

This tool is **ONLY meant to provide general guidelines**, mostly based on the theory of allometric scaling, accounting for the effect of body size on PK

Allometric scaling alone works well down to 2 years of age, but below that, **immature organ function** may cause clearance to be lower than body size alone would predict. This is explored in the tool but is **strongly drug-specific**

Other factors – not accounted for in the tool - **may have a large impact**, e.g.: • lower protein binding in young children, • differences in drug formulation, • or poor absorption.

Additionally, terminal half life is generally shorter in children, so targeting the same AUC - as in this tool - may achieve higher C_{max} and lower C_{min} . To avoid toxicity (high C_{max}) or poor efficacy (low C_{min}), it may be necessary to switch from QD to BID dosing in smaller children.

Only typical values are shown and no between subject variability is included here. Some drugs may be characterised by large variability

Discussion

The purpose of the tool is to **assist in the design of clinical trials** for dosing in paediatrics, and is meant as a first step, **not a substitute to confirmatory**

The use of this tool (and thus allometric scaling) for study design would represent a significant step away from the constant mg/kg paradigm, possibly leading to improvements in the efficacy of paediatric dosing trials.

References

[1] B. J. Anderson and N. H. G. Holford, "Mechanism-based concepts of size and maturity in pharmacokinetics.," Annu. Rev. Pharmacol. Toxicol., vol. 48, pp. 303–32, Jan. 2008.

[2] Liu T, Ghafoori P, Gobburu JVS. 2016. Allometry is a reasonable choice in pediatric drug development. J. Clin. Pharmacol. 1–20.

[3] 1. Bouazza N, Cressey TR, Foissac F, Bienczak A, Denti P, McIlleron H, Burger D, Penazzato M, Lallemant M, Capparelli E V., Treluyer J-M, Urien S. 2016. Optimization of the strength of the efavirenz/lamivudine/abacavir fixed-dose combination for paediatric patients. J. Antimicrob. Chemother.

[4] Bouazza N, Hirt D, Blanche S, Frange P, Rey E, Tréluyer J-M, Urien S. 2011. Developmental pharmacokinetics of lamivudine in 580 pediatric patients ranging from neonates to adolescents. Antimicrob. Agents Chemother. 55:3498–504.

Link

Link on WHO website: http://www.who.int/hiv/paediatric/generictool/en/

Contact details: paolo.denti@uct.ac.za