Non-AIDS Illness Burden Differs by Sex, Race, and Insurance Type in Aging HIV+ Adults

FJ Palella Jr ${ }^{1}$, R Hart ${ }^{2}$, C Armon ${ }^{2}$, E Tedaldi ${ }^{3}$, B Yangco ${ }^{4}$, R Novak ${ }^{5}$, L Battalora ${ }^{2,6}$, D Ward ${ }^{7}$, B Dean ${ }^{2}$, and K Buchacz ${ }^{8}$ for the HIV Outpatient Study (HOPS)

${ }^{1}$ Northwestern University Feinberg School of Medicine, Chicago, IL, US; ${ }^{2}$ Cerner Corporation, Kansas City, MO, US; ${ }^{3}$ Lewis Katz School of Medicine at Temple University, Philadelphia, PA, US; ${ }^{4}$ Infectious Disease Research Institute, Inc.,
-

Investigating the epidemiology of non-AIDS chronic co-morbidities
(NACM) among aging HIV-infected persons is essential to optimize (NACM) among aging HIV-infected persons is essentia
clinical care and to plan health screening strategies. We evaluated number and types of NACMs in a large diverse
population of HIV-infected adults receiving antiretroviral therapy (ART).
tudy Population: HIV Outpatient Study (HOPS) patients at 8 U.S. HIV llinics, seen during $11 / 1 / 1997$ to $6 / 3012015$, who were followed for a minimum of 5.0 years with $\geq 75 \%$ of observation time on ART and
having $\geqslant 75 \%$ of time on ART with HIV RNA levels <200 copies/mL. Statistical Methods: In stratified analysis (by age at last observation 8-40, 41-50, 51-60, $\mathbf{2 6 1}$ years), we assessed: Namtime during HOPS observation. HIV transmission risk, payor, body mass index (BMI), and years of Modeling performed using Poisson regression. ACMs included were cardiovascular disease, cancer, hypertension, diabetes, dyslipidemia, degenerative joint disease/fracture, chroni
Hepatitis B (HBV) or Hepatitis C (HCV) infection, chronic kidney disease, anemia, and psychiatric illness.
NACMs were assessed using abstracted data collected by routine
medical records review: lab records, documented diagnoses, and meatments.
Participants with evidence of an NACM from at least one of the
three data sources were classified as having that NACM except for three data sources were classified as having that NACM, except for
hypertension, diabetes, and dyslipidemia, for which evidence was required from at least two of the three sources. ESULTS
81% men, 26%, there were (see Table 1):
\% men, 26% non-Hispanic black, 55% with private insurance. 8% men who have sex with men (MSM), 24\% het.
Mersons with injection drug use (IDU) history.
Median observation time of 10.9 years.
Mean number of NACMs increased with advancing age category; 1.4 , 1, 3.0, 3.9, respectively (Figure 1).
age categories (P<0.001) except for $H B V$ infection and psychiatric age categories (P)
illness (Figure 2).
Significant differences (all $P<0.05$) in mean number of NACMs were Sex (women > men, 3.1 vs 2.6), race (blacks $>$ non-blacks, 3.0 2.6), HIV transmission risk (IDU $>$ heterosexual and $\mathrm{MSM}, 4.3 \mathrm{vs}$. 3. and 2.4), and insurance status (public $>$ private, 3.6 vs 2.1).
These differences were especially apparent in older age gro These differences were especially apparent in older age groups
($51-60$ and >61 years, 3.0 and 3.9 vs. 1.9 for ≤ 50 years of age), and
were driven primarily by differences in specific NACMs: cancer were driven primarily by
chronic kidney disease. cthe multivariable model, factors associated with higher number of
In thCMs were increasing age, IDU or heterosexual HIV NACMs were increasing gae IDV or heterosexual HIV transmission
isk, public or self-pay/no healthcare insurance, BMI ≥ 30 and longe risk, public or self-pay/no healthcare ins
ART exposure (P<0.05 for all; Table 2).

Charactersisicsat end of obsenation, P (\%)		$$				P.value'
Sex at birth Female	${ }^{238} 91900$	${ }^{412(228)}$	${ }^{103} \mathbf{2 0 . 5}$	${ }^{1033}(18.4)$	${ }^{46} \mathbf{6}(154.4)$	${ }^{0.171}$
Neatemicty						
	939 (61.0) 125 (8.1)	115 (63.9) 4 (2.2)			37 (12.4)	
				$307(54.8)$ $218.6)$ 		
Ans staus	${ }^{951(61.8)}$					$\substack{\text { co.0. } \\ \text { coon }}$
			$\begin{gathered} 10(20) \\ \hline \end{gathered} 18(905)$		$\begin{aligned} & 14(4,7) \\ & \hline \end{aligned}$	
cose		$15(82)$ $22(123)$ 120$)$			314(110)	
cois	come	come				
coick			${ }_{\substack{\text { a }}}^{47610.2)}$			
	${ }_{208}^{28898989047}$					
Smoder urenerterof	(180)					(0,022
Mediny easis offri(OR) (n-1,48)		${ }_{7}^{79.96 .3} 7$				

 among HOPS particicants who were followed for at least 5 years during 1 199t 6 or
$6 / 3012015$ with $\geq 75 \%$ of observation time on ART and $\geq 75 \%$ of time on ART spent with HIV $6 / 30 / 2015$ with $\geq 75 \%$ of observation tim
RNA levels <200
copies/mL $(N=1,540)^{*}$

Table 2. Univariate and multivariable Poisson regression evaluating factors associated witt having greater r umbers of age-relesteded chronic non-AlID
comorbidities (NACMs) among HOPS participants who were followed for at
 least 5 years during $1 / 1 / 1997$ to $6 / 30 / 2015$ with $\geq 75 \%$ of time on ART and havin
$\geq 75 \%$ time on ART spent with HIV RNA levels <200 copies/mL ($N=1,540$).

Figure 3. Mean number of non-AIDS comorbidities by race/ethnicity, sex, HIV transmission risk, and payor among HOPS participants who were followed for a
least 5 years suring $1 / 111997$ to $6 / 3012015$ with $\geq 75 \%$ of time on ART and having least 5 years during $11 / 1 / 1997$ to $6 / 30 / 2015$ with $\geq 75 \%$ of time on ART and
$\geq 75 \%$ time on ART spent with HIV RNA levels <200 copies/mL ($N=1,540$)

LIMITATIONS
Routinely collected medical abstraction data with variability in the timing of participant healthcare contact screenings.
No information available on potential confounders, No information avaiaus.
socioeconomic status.
CONCLUSIONS:
We observed age-related increases in prevalence of nonAIDS chronic co-morbidities (NACM) and polymorbidity- with disproportionate NACM burden most apparent among older participants, women, blacks, and publicly insured persons. In fully-adjusted models, the observed excess NACM burden persisted for persons without private sources of healthcare payment.
Our finding
demographic, healthcare coeverage, and social determinants of health in the routine primary care of Holivinfected persons.
These findings may inform healthcare delivery systems. These findings may inform healthcare delivery systems.
Cerner

