Field-based Delivery of HCV therapy with Minimal Monitoring to PWID in Chennai, India

Sunil S Solomon, Amrose Pradeep, Mark Sulkowski, Allison M McFall, Aylur K Srikrishnan, Nandagopal Paneerselvam, Shanmugam Saravanan, Santhanam Anand, Muniratnam S Kumar, David Thomas, Shruti H Mehta

CHHEERS

CHHEERS

The Chennai HIV, Hepatitis Cand EERal Study

Sunil S Solomon I 830 E Monument St, Rm 444, Baltimore, MD 21287 sss@jhmi.edu

¹Johns Hopkins University School of Medicine, MD;²Johns Hopkins Bloomberg School of Public Health, USA; ³YR Gaitonde Centre for AIDS Research and Education, India

BACKGROUND

- In 2016,WHO released **elimination** targets for hepatitis C virus (HCV)
- For these targets to be achieved, strategies must reach those hardest to reach in low-and-middle-income countries (LMICs) such as people who inject drugs
- Access in LMICs has improved with availability of generic antivirals (\$200 USD / 28 days) but monitoring remains costly (cost of HCV RNA is \$80 USD and HCV genotype is \$90 USD)
- We evaluated the **feasibility** of **field-based directly observed therapy** (DOT) with **minimal molecular monitoring** for HCV therapy in current and former **PWID** in Chennai, **India** where **genotypes I and 3** predominate.

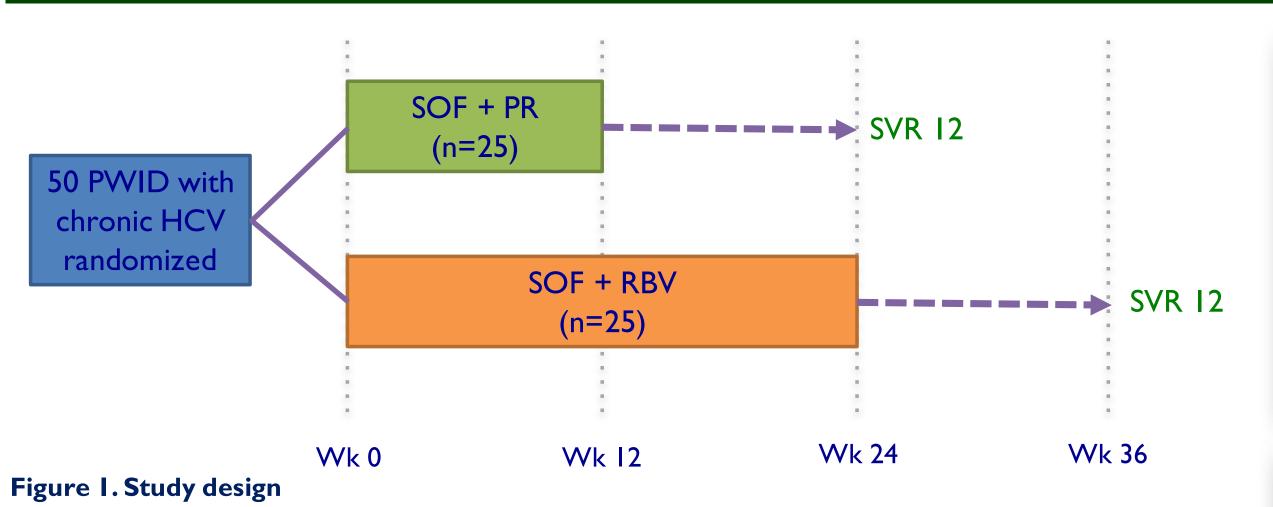
METHODS

RANDOMIZATION

- Study participants were recruited from an ongoing cohort of current and former PWID (CHHEERS) from September 2015 to March 2016
- 50 PWID (of 98 screened) were randomized 1:1 to receive Sofosbuvir + Pegylated interferon + Ribavirin (SOF + PR) for 12 weeks (Arm 1) or Sofosbuvir + Ribavirin (SOF + RBV) for 24 weeks (Arm 2)

TREATMENT DELIVERY / MONITORING

- HCV RNA testing was done at baseline and I2 weeks after the end of treatment (EOT) to measure sustained virologic response I2 (SVR, HCV RNA < lower limit of quantification [LLOQ] I2 weeks after EOT)
- Subjects in Arm I visited the study clinic once weekly for pegylated interferon injections
- For subjects in both arms, SOF/RBV was delivered daily by outreach workers at subject-selected venues along with a food packet
- Safety labs (complete blood count) were performed every four weeks and liver enzymes were assessed after 12 weeks of treatment for Arm 2
- Study visits occurred every 4 weeks


ELIGIBILITY CRITERIA

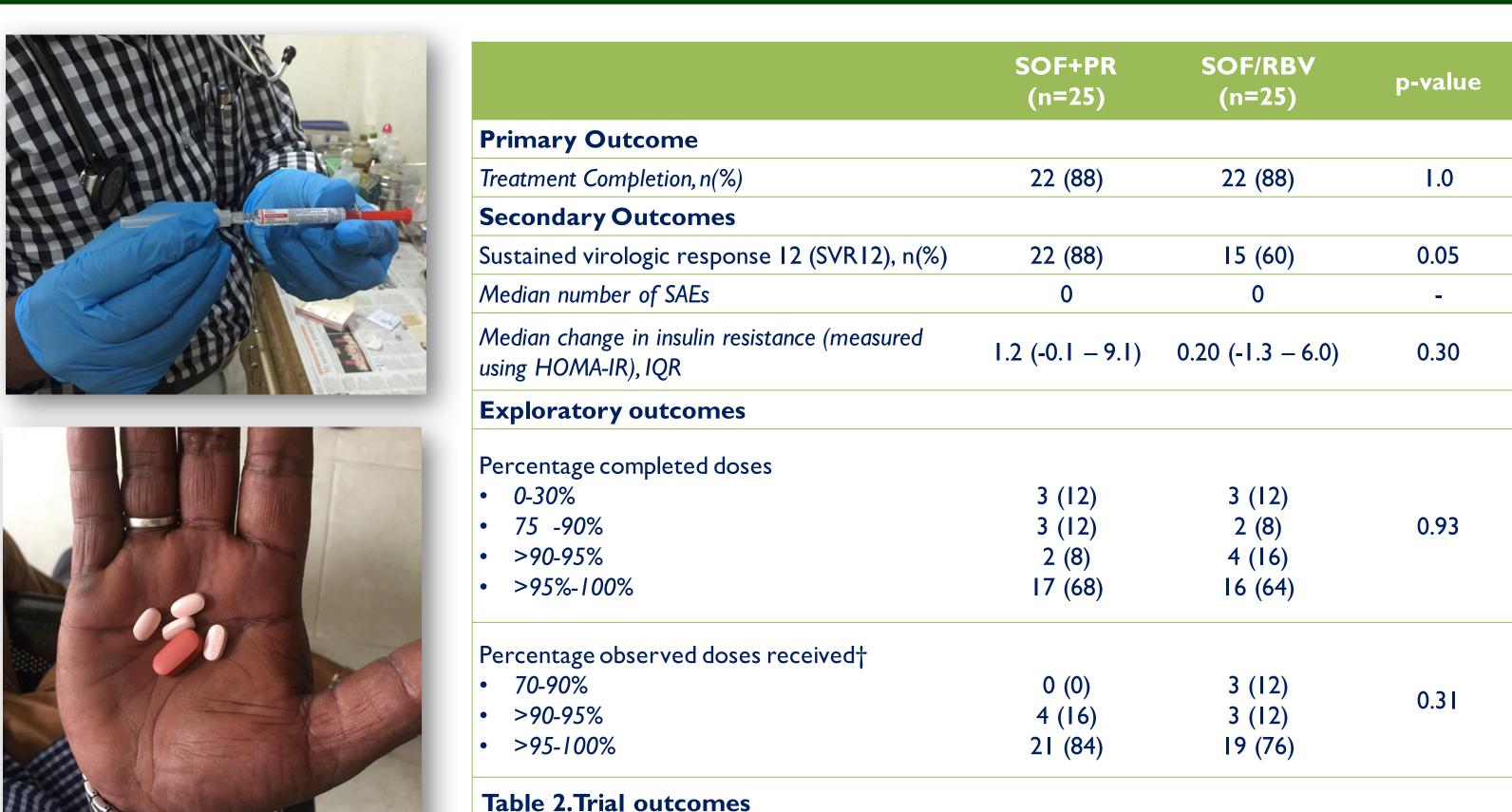
- Age ≥18 years and able to provide written informed consent
- Chronic HCV Infection (detectable HCV RNA)
- If HIV co-infected, participants had to be either ART naïve or on tenofovir-containing regimen
- Have the following laboratory parameters: ALT \leq 10 x ULN; AST \leq 10 x ULN; hemoglobin \geq 12 g/dl; INR \leq 1.5 x ULN (unless known hemophilia or stable on an anticoagulant regimen); albumin \geq 3 g/dl; direct bilirubin \leq 1.5 x ULN; Creatinine clearance \geq 60 ml/min; alpha fetoprotein <50 ng/ml; absolute neutrophil count \geq 1500 µl; platelet count \geq 90,000 µ/l; and thyroid stimulating hormone \leq ULN
- Female patients who were pregnant/nursing and male patients with pregnant female partners were excluded
- Persons were also excluded if they had evidence of hepatic decompensation, had previously been treated for HCV, were co-infected with hepatitis B (HBsAg) or had a medication that was contraindicated for use with either pegylated interferon or ribavirin

TRIAL OUTCOMES AND STATISTICAL ANALYSIS

- The primary outcome was treatment completion
- Secondary outcomes included 1) SVR; 2) frequency of severe adverse events (SAEs); and 3) change in insulin resistance (HOMA-IR)
- I of the 6 persons who did not complete treatment was reached for HCV RNA testing. Other secondary outcomes could not be ascertained in these 6 persons.
- An intention to treat (Missing=Failure) was the primary analytical approach

RESULTS

	Week									
	0	4	8	12	16	20	24	36		
HCV RNA	X						X^*	X**		
HCV genotyping										
CBC	X	X	X	X	X**	X**	X*,**			
LFT				X**			X*,**	X **		
		_		_						



	SOF+PR	SOF+RBV				
	(n=25)	(n=25)	10			
Median age in years, (IQR)	46 (41 – 50)	46 (44 – 47)	8			
Male, n(%)	25 (100)	25 (100)	_			
Median monthly income, in USD (IQR)	90 (68 – 1290)	90 (72 – 150)	- 6			
History of substance use in the prior month, n(%)	13 (52)	12 (48)				
Liver stiffness category, n(%)						
<8 kPa	15 (60)	12 (48)	4			
8-12.3 kPa	5 (20)	8 (32)	2			
> 12.3 kPa	5 (20)	5 (20)				
FIB-4 Index, n(%)						
Class $1, \leq 1.45$	6 (24)	7 (28)				
Class 2, 1.46 - 3.25	16 (64)	II (4 4)	100			
Class 3, >3.25	3 (12)	7 (28)				
CTP Classification, n(%)			80			
Class A	25 (100)	25 (100)				
Median MELD score, (IQR)	7 (6 – 7)	7 (6 – 7)	60			
Median HCV RNA in log ₁₀ copies/ml, (IQR)	6.5 (6.1 – 6.6)	6.1 (5.5 – 6.7)				
HCV Genotype, n(%)			40			
la	2 (8)	5 (20)				
3a	22 (88)	20 (80)	20			
6n	I (4)	O				
HIV co-infected, n(%)	0	2 (8)				

1.3 (0.7 - 3.4)

2.4 (1.1 - 5.6)

Median HOMA-IR

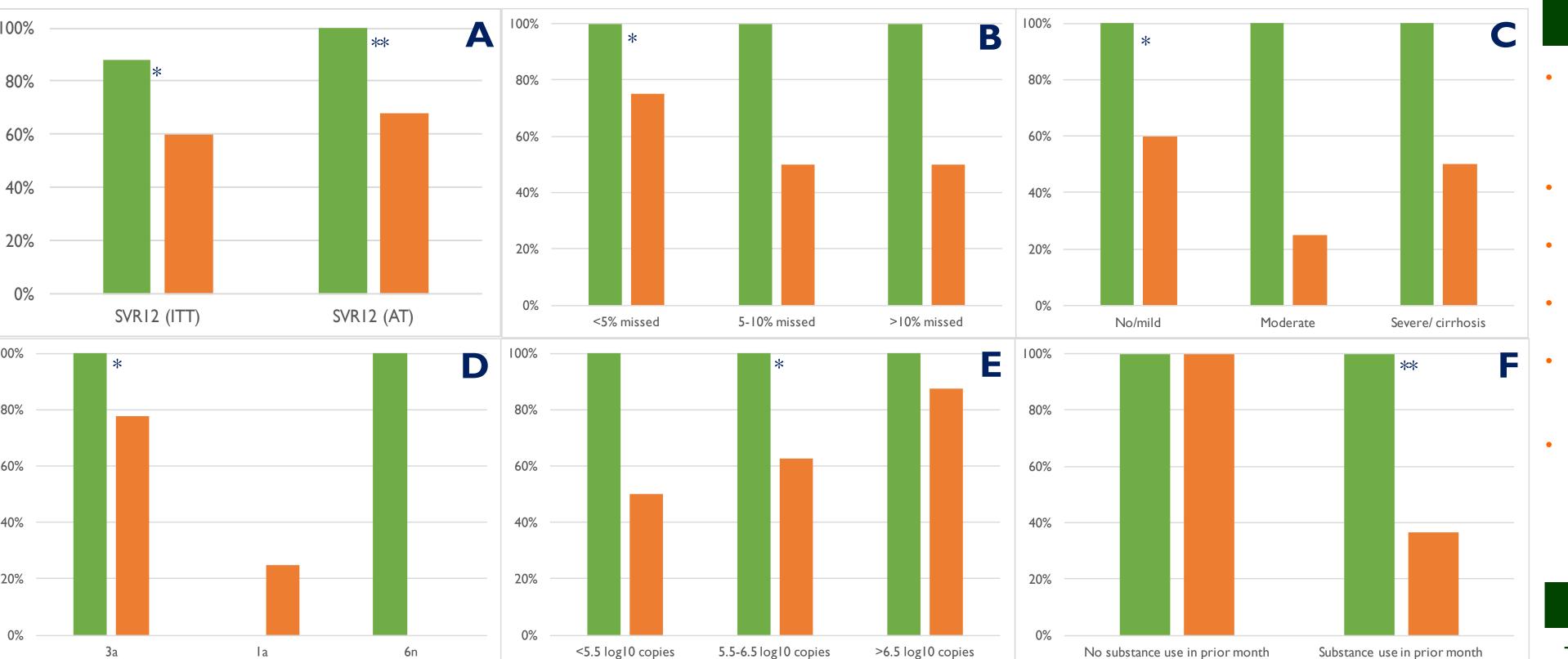


Figure I. Sustained virologic response I2 (SVR) by treatment arm and factors of interest. Green is SOF + PR and Orange is SOF + RBV. *Panel A*. SVR 12 for the intention to treat analysis (ITT, n=50) analysis and the As treated analysis (AT, n=44). Other AT comparisons are by: *Panel B*. Percentage of missed doses; *Panel C*. Pre-treatment liver stiffness; *Panel D*. HCV genotype; *Panel E*. Pre-treatment HCV RNA level; *Panel F*. Drug or alcohol use in the month prior to treatment.* - p<0.05; ** - p<0.01

CONCLUSIONS

- Field-based DOT of HCV therapy without real-time molecular monitoring was logistically feasible in this population of current and former PWID many of who were still using drugs or alcohol regularly
- However, achieving 100% adherence was challenging even in the context of daily field-based delivery
- SOF+PR appeared superior to SOF/RBV in achieving SVR, especially in those who missed doses

 No discontinuations due to side effects were observed in either arm
- Ongoing substance use appeared to be a barrier to achieving SVR in the those receiving SOF/RBV for 24 weeks but not in those on SOF + PR for I2 weeks
- In settings where injections are perceived more effective than pills and/or adherence may be challenging, there may remain a role for peginterferon in combination with oral direct acting antivirals for short treatment durations

ACKNOWLEDGEMENTS

This research was supported by the National Institutes of Health, US Grant # IR01DA026727 and facilitated by the Johns Hopkins Center for AIDS Research (IP30AI094189). We thank our study staff and participants, without whom this research would not have been possible. ClinicalTrials.gov identifier: NCT02541409