

Direct-Acting Antivirals Improve Access to Care and Cure for Patients with HIV and chronic Hepatitis C Virus from 2011-2015

lauren.f.collins@duke.edu

Duke Clinical Research Institute

Lauren F. Collins¹, Austin Chan², Jiayin Zheng³, Shein-Chung Chow^{3,4}, Julius M. Wilder^{4,5}, Andrew J. Muir^{4,5}, Susanna Naggie^{2,4}

¹Department of Medicine, ²Division of Infectious Diseases, ³Department of Biostatistics and Bioinformatics, ⁴Duke Clinical Research Institute, ⁵Division of Gastroenterology, Duke University, Durham, NC, 27710

Background

- Prior to the approval of direct-acting antivirals (DAA), uptake of curative hepatitis C virus (HCV) therapy was low, particularly for HIV/HCV co-infected patients¹
- DAA offers >95% sustained virologic response (SVR) for the vast majority of HCV-infected patients, regardless of HIV-1 infection^{2,3}
- Although safety and efficacy of HCV therapies have improved, challenges have emerged including high rates of insurance denials and drug interactions between antiretroviral therapy (ART) and DAA^{4,5}

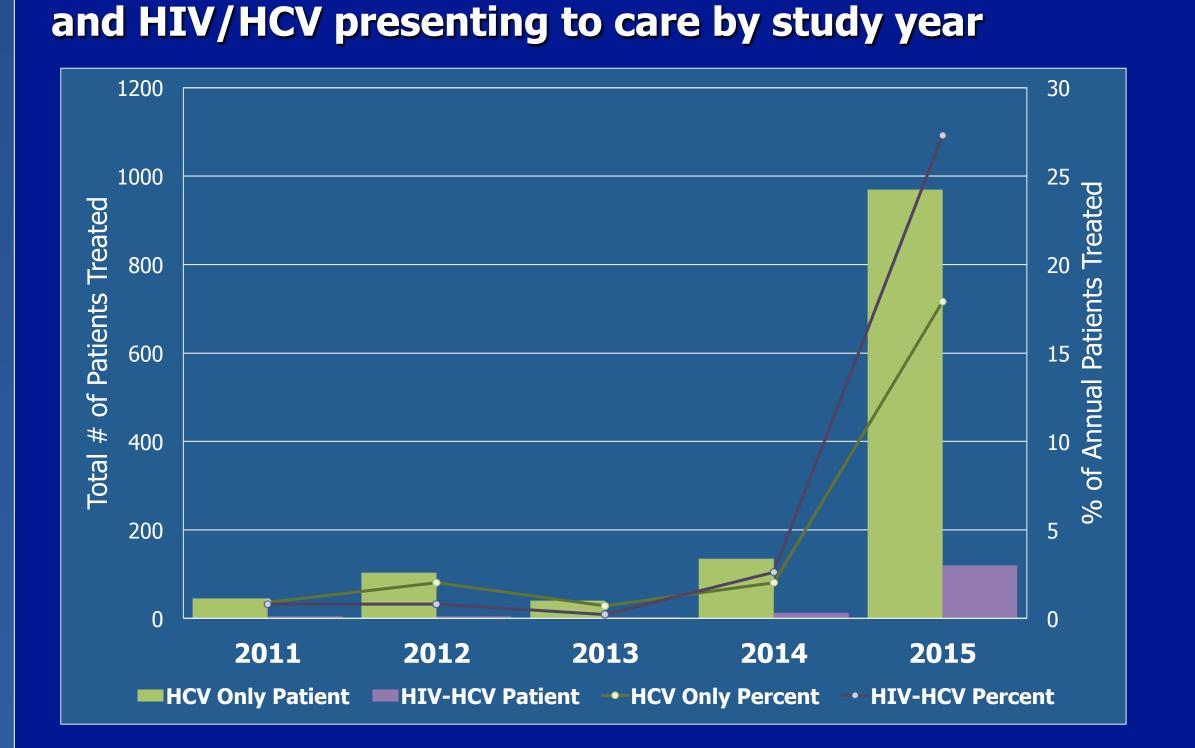
Primary Objective

To measure rates of HCV treatment uptake for active HIV/HCV co-infected and HCV mono-infected patients at Duke University Health System per year of study follow-up by treatment era [DAA + pegylated-interferon with ribavirin (PEG-IFN/RBV) versus IFN-free DAA] from 2011 to 2015.

Methods

STUDY DESIGN / POPULATION

- Retrospective cohort study at Duke University Health System
- January 1, 2011 to December 31, 2015
- Subjects age ≥ 18 with documented HCV and HIV-HCV by ICD-9 or ICD-10 were identified by the Duke Enterprise Data Unified Content Explorer (DEDUCE)
- HIV and HCV diagnoses were confirmed by direct evidence of viral infection or named HIV or HCV on problem list with corresponding antiviral regimen(s) on medication list
- Prescriptions for DAA were queried to determine the treatment numbers for each year
- Demographic and clinical data were extracted by DEDUCE and supplemented by manual chart review
- Cirrhosis and hepatitis B virus (HBV) determined by ICD-9/10
- Time to DAA approval and insurance status were provided by Duke Specialty Pharmacy records


STUDY DEFINTIONS

- SVR 12 = undetectable HCV RNA viral load at 12 ± 2 weeks following completion of HCV treatment
- <u>Treatment uptake</u> = prescription for any HCV therapeutic regimen on medication list for patient with confirmed HCV
- ART switch = change in ART due to initiation of DAA
- Treatment (Tx) experienced = any prior HCV therapy
- <u>Time to DAA approval</u> = # of days between receipt of DAA prescription and approval after prior authorization

STATISTICS

- Comparisons among cohorts employed the Fisher's exact test, the chisquare test, and Student's t-test as appropriate
- Statistical analysis was performed with SAS version 9.4

Figure 1. Treatment uptake for all patients with HCV Table

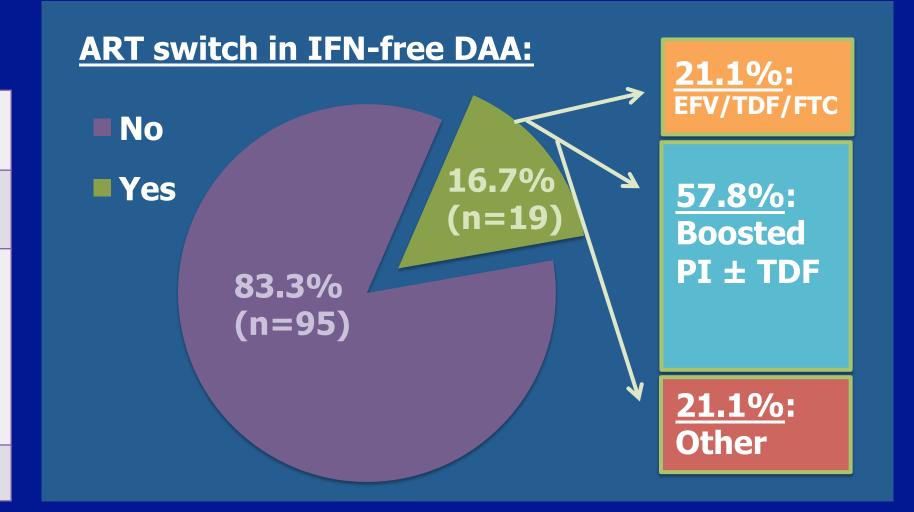
Table 2. Treatment uptake by era and infection status

	infection		Total (n=9960)	P-value
Treatment uptake DAA+PEG-IFN/RBV IFN-free DAA	\	7 (1.0%) 114 (15.9%)	192 1050	p=0.055 p=0.001
Total treated	1121 (12.1%)	121 (16.9%)	1242	p=0.001

Table 3. Demographics of all patients treated with HCV therapeutics during study period

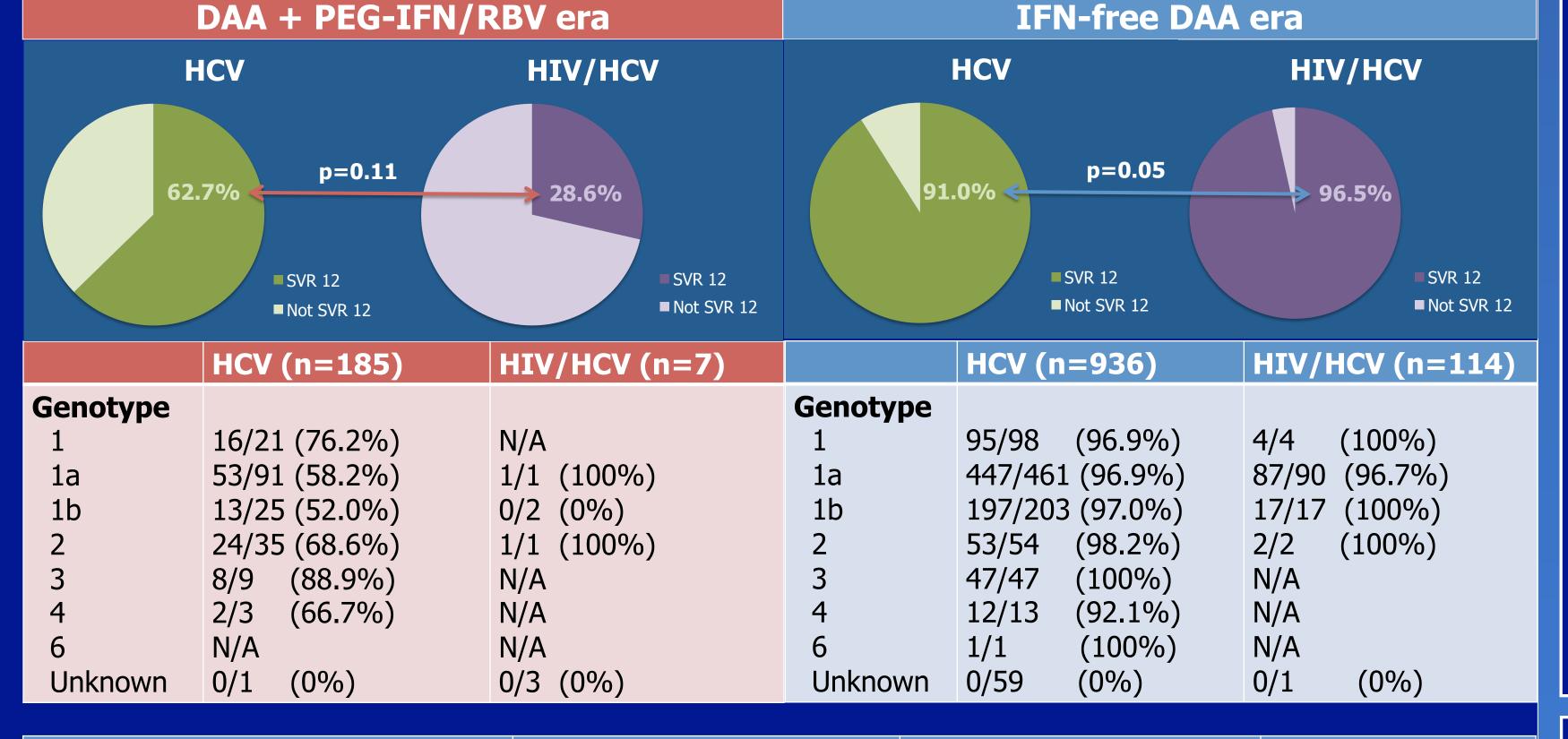
Characteristic	HCV mono- infection (n=1121)	HIV-HCV co-infection (n=121)	P-value
Age (median, range)	61 (56-65)	57 (52-62)	p=0.0002
% Male	59.1%	72.7%	p=0.003
Race African-American Caucasian Other Unknown/declined	394 (35.1%) 652 (58.2%) 43 (3.8%) 32 (2.9%)	88 (72.7%) 32 (26.5%) 1 (0.8%) 0	p<0.0001 p<0.0001 p=0.12 N/A
Ethnicity Hispanic Non-Hispanic Unknown/declined	10 (0.9%) 1069 (95.4%) 42 (3.7%)	1 (1.5%) 118 (97.0%) 2 (1.5%)	p=1.00 p=0.36 p=0.31
HCV Genotype 1 1a 1b 2 3 4 6 Unknown	119 (10.6%) 552 (49.2%) 228 (20.3%) 89 (8.0%) 56 (5.0%) 16 (1.4%) 1 (0.1%) 60 (5.4%)	4 (3.3%) 91 (75.2%) 19 (15.7%) 3 (2.5%) 0 0 0 4 (3.3%)	p=0.009 p<0.0001 p=0.28 p=0.03 N/A N/A N/A p=0.51
% Cirrhosis	49.0%	47.1%	p=0.70
% HBV infection	1.6%	6.6%	p=0.002
% Tx-experienced	23.1%	18.4%	p=0.29

Treatment Uptake


Table 1. Demographics of all patients presenting for HCV care from 2011-2015

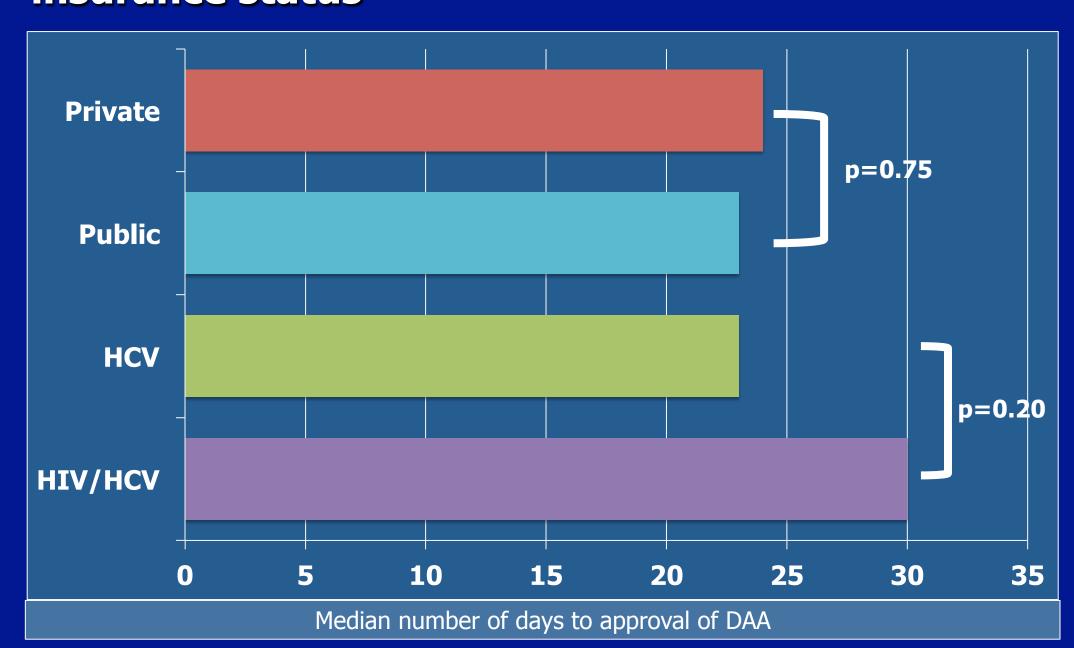
Characteristic	Treated (n=1242)	Not treated (n=8718)	P-value	HCV mono- infection (n=9245)	HIV/HCV co-infection (n=715)	P-value
Age (median, range)	61 (55-65)	60 (54-65)	p=0.0007	60 (54-65)	58 (52-62)	p<0.0001
% Male	60.4%	60.8%	p=0.78	60.1%	69.8%	p<0.0001
Race African-American Caucasian Other Unknown/declined	482 (38.8%) 684 (55.1%) 44 (3.5%) 32 (2.6%)	3345 (38.4%) 4641 (53.2%) 448 (5.1%) 284 (3.3%)	p=0.78 p=0.24 p=0.01 p=0.23	3314 (35.8%) 5160 (55.8%) 466 (5.1%) 305 (3.3%)	513 (71.8%) 165 (23.1%) 26 (3.6%) 11 (1.5%)	p<0.0001 p<0.0001 p=0.11 p=0.008
Ethnicity Hispanic Non-Hispanic Unknown/declined	11 (0.9%) 1187 (95.6%) 44 (3.5%)	151 (1.8%) 7038 (80.7%) 1529 (17.5%)	p=0.03 p<0.0001 p<0.0001	143 (1.6%) 7593 (82.1%) 1509 (16.3%)	19 (2.6%) 632 (88.4%) 64 (9.0%)	p=0.03 p<0.0001 P<0.0001

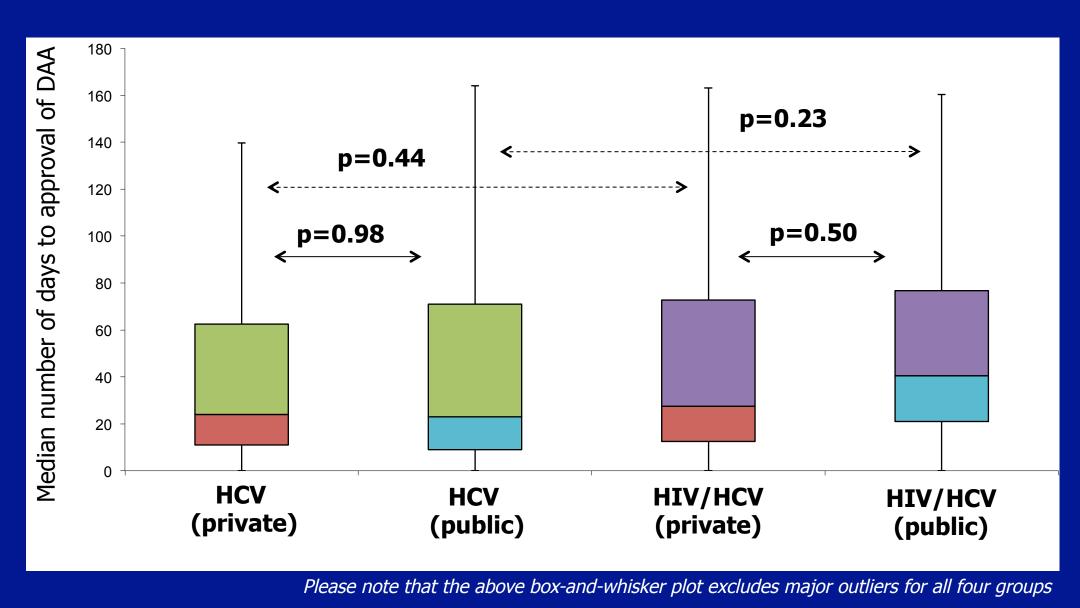
HIV patients — ART switches


Table 4. Hepatic comorbidities by infection status, 2011-2015

Liver-related comorbidities	HCV (n=9245)	HIV-HCV (n=715)	P-value
Esophageal varices	7.1%	5.3%	p=0.04
Hepatic decompensation Ascites Spontaneous bacterial peritonitis Hepatic encephalopathy	10.9% 1.4% 4.9%	10.5% 1.0% 3.1%	p=0.80 p=0.50 p=0.03
Death	5.7%	6.2%	p=0.62

Treatment success — SVR 12


Figure 2. Treatment success by treatment era for HCV vs HIV/HCV patients



SVR 12 rates in patients with: HCV mono-infection HIV/HCV co-infection P-value **Cirrhosis** 52/54 (96.3%) 382/433 (88.2%) p = 0.105/5 (100%) p=1.00**Tx-experienced** 195/210 (92.9%) **Cirrhosis + Tx-experienced** 121/133 (91.0%) 2/2 (100%) p=1.00

Access to DAA therapy

Figure 3. Time to DAA approval by infection and insurance status

Conclusions

- Treatment uptake for HIV/HCV compared to HCV monoinfected patients has improved significantly in the IFNfree DAA era
- Patients with HIV/HCV who are treated with DAA are more likely to be younger, male and African-American compared to HCV mono-infected counterparts
- Antiretroviral therapy switching prior to HCV therapy is common for HIV/HCV patients
- DAA provide similar rates of SVR 12 for patients with HCV mono-infection and HIV co-infection
- There was no difference in time to approval for DAA therapy when compared by insurance status, nor when compared by infectious status (HCV vs HIV/HCV) including stratifying infection status by payer source

References

(1) Torriani, F. J. *et al.* Peginterferon Alfa-2a plus ribavirin for chronic hepatitis C virus infection in HIV-infected patients. *N. Engl. J. Med.* **351,** 438–450 (2004). (2) Osinusi, A. *et al.* Virologic response following combined ledipasvir and sofosbuvir administration in patients with HCV genotype 1 and HIV co-infection. *JAMA* **313,** 1232–1239 (2015). (3) Sulkowski, M. S. *et al.* Ombitasvir, paritaprevir co-dosed with ritonavir, dasabuvir, and ribavirin for hepatitis C in patients co-infected with HIV-1: a randomized trial. *JAMA* **313,** 1223–1231 (2015). (4) Lo Re V. 3rd *et al.* Disparities in Absolute Denial of Modern Hepatitis C Therapy by Type of Insurance. *Clin Gastroenterol Hepatol.* **14,** 1035—1043 (2016). (5) Childs, K. *et al.* Directly acting antivirals for hepatitis C virus

arrive in HIV/hepatitis C virus co-infected patients: from 'mind the gap' to 'where's the gap?'. AIDS. 30, 975—989 (2016).