

SHOULD WE BE TESTING FOR BASELINE INTEGRASE RESISTANCE?

¹Department of Medicine, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham, ¹Department of Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham, ¹Department of Hospital, Boston MA; ⁴Division of Infectious Diseases, Brigham, ¹Department of Hospital, ¹Department o This work was supported by the National Institutes of Health (R01 AI 042006; K01 HL123349 (EPH)), and by the Steve and Deborah Gorlin MGH Research Scholars Award (RPW).

BACKGROUND

- Treatment guidelines recommend a standard genotype to guide selection of antiretroviral therapy (ART) in patients newly diagnosed with HIV.
- Integrase strand transfer inhibitors (INSTIs) are recommended in most first-line ART regimens, yet standard genotypes do not assess for INSTIresistance (INSTI-R).
- Prevalence of transmitted INSTI-R virus is low (0-0.1%) in published and presented studies from the U.S. and Europe.
- Treatment with dolutegravir (DTG)-based ART can result in suppression of INSTI-R virus in some patients.
- It is not clear if testing for INSTI-R prior to ART initiation improves clinical outcomes or if it is cost-effective.

OBJECTIVE

• To examine the conditions under which INSTI-R testing at ART initiation might improve clinical outcomes and be cost-effective compared to current standard of care (no testing).

METHODS

Model structure (Figure 1)

• We designed a decision tree model to simulate an HIV-infected, ART-naïve patient presenting for baseline lab work and genotype, as per 2016 DHHS guidelines [1].

Strategies of care (Figure 1)

- No testing (current standard of care): Genotype only prior to ART initiation. • At ART initiation, all patients start DTG-based ART.
- At 12-wk, patients reassessed; those not virologically suppressed undergo standard genotype and INSTI-R testing.
- At 12-wk, patients with INSTI-R virus start darunavir/ritonavir (DRV/r)-based ART.

• **Testing:** Genotype and INSTI-R testing prior to ART initiation.

- Patients with INSTI-susceptible (INSTI-S) virus start DTG-based ART.
- Patients with INSTI-R virus start DRV/r-based ART.

Input parameters

• ART efficacy, Quality of life, ART costs (Table 1)

- Cohort characteristics [2]
- Mean age, 43 years.
- 84% male.
- Mean CD4 count, 339 cells/mm³ (95% CI, 321-358 cells/mm³).
- INSTI-R virus prevalence
- 0.1% among ART-naïve [3-10].
- Additional costs
- Genotype test 351 USD; INSTI-R test 175 USD [11].

Outcomes (96 weeks):

• Clinical outcomes:

- Suppressed.
- Not suppressed: viremia due to virologic resistance, poor adherence, or **Quality of Life** ART discontinuation due to adverse events.
- Quality-adjusted life years (QALYs):
- Health-related quality of life (QoL) values stratified by CD4 count and viral load, based on ACTG 5142 trial data [12].
- Costs (USD).
- Incremental cost-effectiveness ratio (ICER, ΔUSD/ΔQALY); cost-effective if ≤100,000 USD/QALY.

Figure 1: Decision tree to evaluate the clinical benefits and cost-effectiveness of testing for INSTI-R virus compare testing prior to ART initiation.

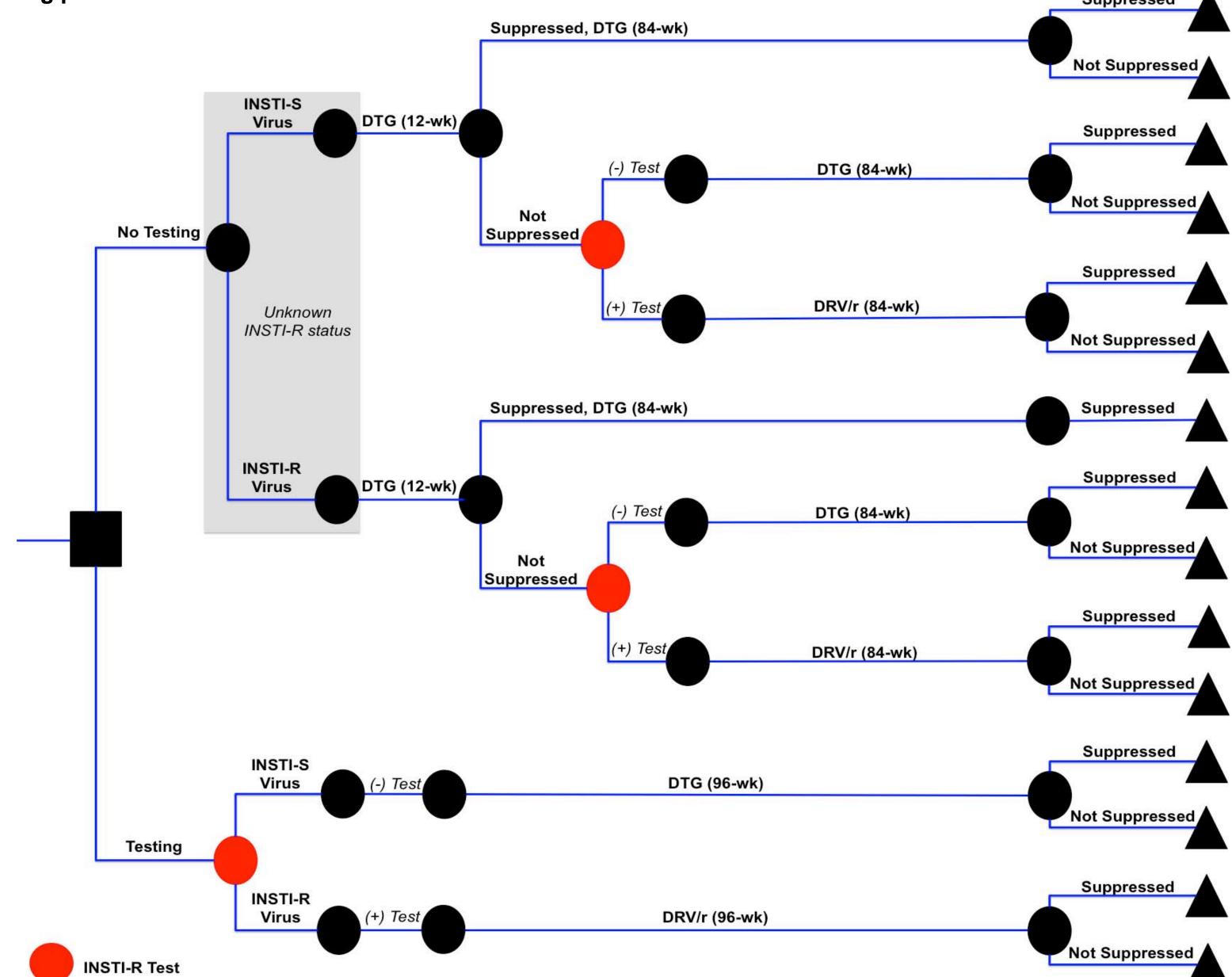


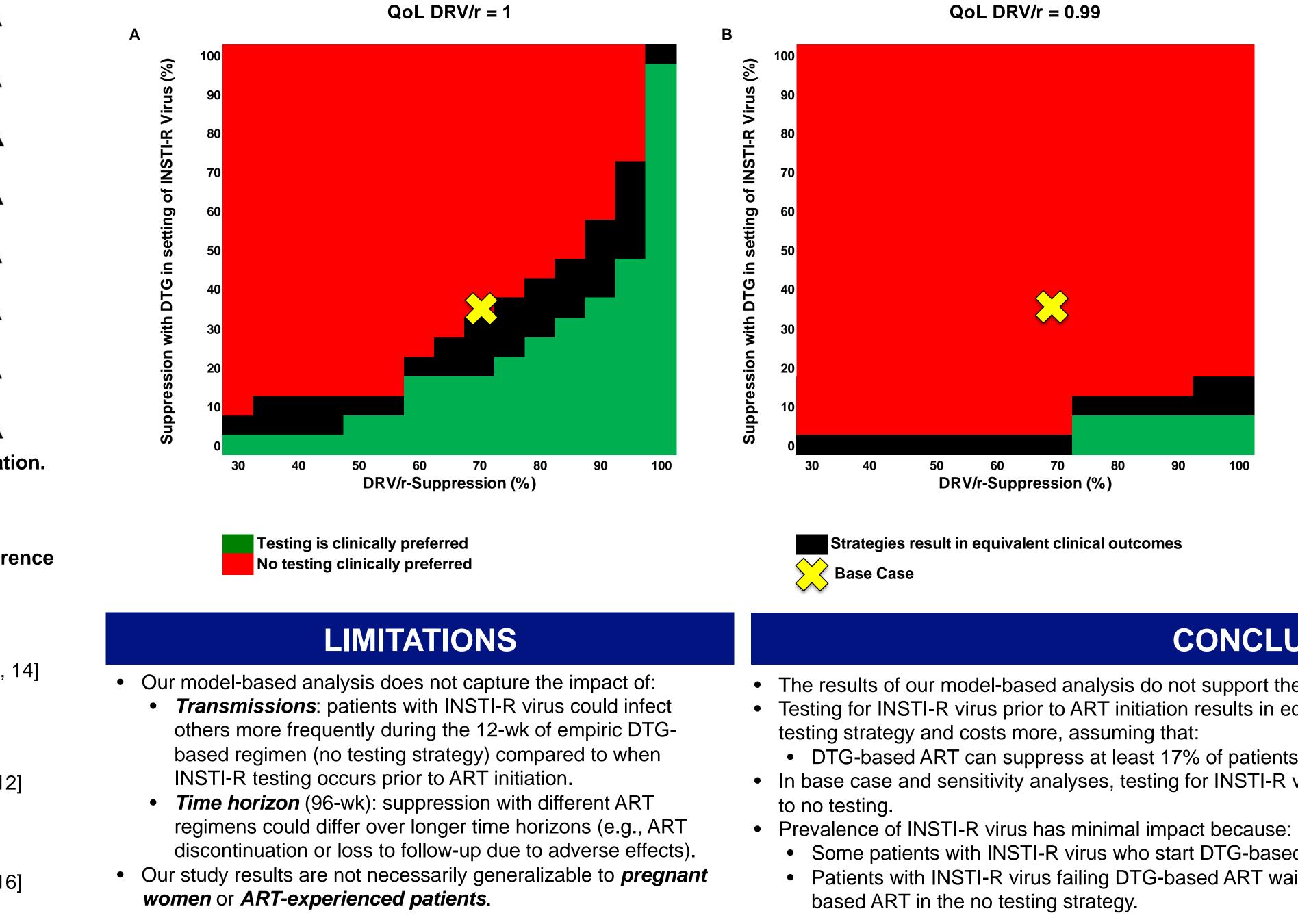
Table 1: Model input parameters for analysis of testing for INSTI-R virus compared to no testing prior to ART initiation.

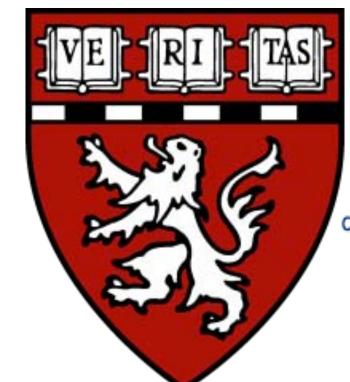
ART Efficacy (%) INSTI-S virus Suppression Suppressior **INSTI-R** virus Suppression Virologically sup Viremia

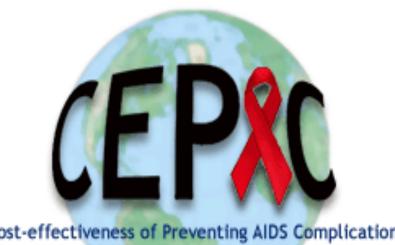
QoL decrement

Cost (USD)

ART, annual


Yiannis Koullias,¹ Paul E. Sax,² Rochelle P. Walensky,^{3, 4} Emily P. Hyle^{3, 4}


METHODS: INPUT DATA


	DTG-based regimen			DRV/r-based regimen		
	Base Case	Range (min-max)	Reference	Base Case	Range (min-max)	Referen
on at 12-wk	90	30-100	[13]	_	_	
on at 96-wk	80	30-100	[13]	71	30-100	[13, 14
on at 12-wk	35	0-100	[15]	71	30-100	
ippressed	0.954 0.931	_ 0.781-0.953	[12]	0.954 0.931	_ 0.781-0.953	[12]
t for ART regimen	1	_		1	0-0.990	
	\$38,150	\$12,000-100,000	[16]	\$42,661	\$12,000-100,000	[16]

					RE	
red to no	Table 2: Base case model output for testing for INSTI-R virus compared to no testing prior to ART initiation.					
	-	QALY	Costs (USD)	ICER (USD/QALY)		
	No testing	1.788	\$70,800	-	96-wk su 96-wk su DTG-sup	
	Testing	1.788	\$71,000	DOMINATED	QoL whe QoL on D Prevalen	
	 In the base case, QALYs are equal between the two strategies, assuming a level of precision of 3 significant figures. The testing strategy costs more and is dominated. 					

Figure 2: Multivariate sensitivity analysis of the clinical impact (QALYs) of testing for INSTI-R virus compared to no testing at a prevalence of INSTI-R virus of 0.1% while varying the probability of suppression with DTG-based ART in setting of INSTI-R virus (y-axis) and suppression with DRV/r-based ART (x-axis).

Emily P. Hyle, MD Division of Infectious Diseases, MGH 50 Staniford Street, 9th Floor Boston, MA 02114 Phone: 617-643-3903 Email: ehyle@partners.org Poster #493

ESULTS

3: Univariate sensitivity analysis model outputs for INSTI-R testing compared to no testing to ART initiation.

- suppression with DTG-based ART (base case, 80%) suppression with DRV/r-based ART (base case, 71%) uppression in setting of INSTI-R virus (base case, 35%) nen viremic (base case, 1) DRV/r-based ART (base case, 1)
- ence of INSTI-R virus (base case, 0.1%)
- No testing clinically Testing clinically preferred preferred >95% 0-95% >85% 0-85% <12% 12-100% 0-1 0-1 0-100%

en one strategy is clinically preferred over the other, the differences in QALYs are extremely small $x 10^{-3} - 9.4 \times 10^{-7}$) and the differences in costs are also small (160-860 USD). n when testing is clinically preferred, it is never cost-effective compared to no testing (ICERs > 40) ion USD/QALY) unless 96-wk suppression with DTG-based ART is >95%.

Multivariate sensitivity analysis (Figure 2):

- When QoL for time spent on on DRV/r-based ART is equivalent to that on DTG-based ART (Panel A), *testing* is clinically preferred when suppression on DRV-based ART improves, even at higher probabilities of suppression on DTG-based ART for **INSTI-R** virus.
- When the QoL for time spent on DRV/r-based ART is 99% of that on DTG-based ART (Panel B), *testing* is only clinically preferred when:
- DTG suppression in setting of INSTI-R virus is <10%.
- DRV/r suppression is >75%.

• When one strategy is clinically preferred over the other, QALYs increase by 4.3×10^{-5} to 1.9×10^{-6} , an extremely small difference.

REFERENCES

[1] DHHS panel on ART guidelines. [2] Buchacz et al, 2012. [3] Margot et al, 2014. [4] Scherrer et al, 2016. [5] Volpe et al, 2015. [6] Doyle et al, 2015. [7] Steckler et al, 2015. [8] Sayan et al, 2016. [9] Rodriquez et al 2016. [10] Tostevin et al, 2016. [11] Center for Medicare & Medicaid Services. [12] ACTG 5142. [13] FLAMINGO. [14] ACTG A5257. [15] VIKING-3. [16] **RED BOOK**

CONCLUSIONS

• The results of our model-based analysis do not support the strategy of testing for INSTI-R virus prior to ART initiation. • Testing for INSTI-R virus prior to ART initiation results in equivalent or worse clinical outcomes compared to a no

DTG-based ART can suppress at least 17% of patients with INSTI-R virus [15].

• In base case and sensitivity analyses, testing for INSTI-R virus prior to ART initiation is never cost-effective compared

• Some patients with INSTI-R virus who start DTG-based ART will achieve suppression.

• Patients with INSTI-R virus failing DTG-based ART wait a maximum of 12 weeks prior to switching to DRV/r-