

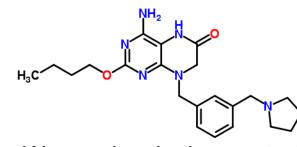
Poster Number 338LB

24th Conference On Retroviruses And

Opportunistic Infections 2017 (CROI 2017)

TLR7 Agonist Treatment of SIV+ Monkeys on ART Can Lead to Complete Viral Remission

So-Yon Lim¹, Christa E. Osuna¹, Joseph Hesselgesser², Alison L. Hill³, Michael D. Miller², Tomas Cihlar², Romas Geleziunas², William A. Lee ² and James B. Whitney^{1,4} ¹Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; ² Gilead Sciences, Inc. Foster City, CA 94404; ³Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138 USA; ⁴Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA


BACKGROUND

- Latent reservoirs of replication competent HIV-1 persist in patients on antiretroviral therapy (ART) and represent the major obstacle to HIV eradication efforts.
- Multiple cure approaches being undertaken, but the focus is on virus reactivation from latency combined with immunomodulation i.e. "shock and
- The identification of pharmaceutical agents capable of safely reversing HIV-1 latency in ART-treated patients is urgently needed.

- Expressed in plasmacytoid dendritic cells and B lymphocytes
- Part of the innate immune system linked to adaptive immunity
- TLR7 activation leads to
- increased antigen presentation
- enhanced NK and CD8+ T cell activation (KILL)
- activation of CD4+ T cells

GS-9620 (Vesatolimod)

4-amino-2-butoxy-8-[[3-(pyrrolidin-1-ylmethyl)phenyl]methyl]-5,7-dihydropteridin-6-one

- Potent, selective and orally deliverable TLR7 agonist
- Anti-viral activity against HBV in animal models and HIV-1 in in vitro model
- We previously demonstrated the activity of TLR7 agonists (GS-986 and GS-9620) in SIV-infected ART-suppressed RM to induce
 - activation of immune cells with the greatest change in the effector memory subpopulation of CD4+ and CD8+ T cells and NK cells
 - induction of transient plasma viremia
 - induction of cytokines/chemokines
 - induction of ISGs in the absence of IFN-α
 - reduction of viral DNA content in PBMCs, colon and lymphoid tissues

(Whitney et al. CROI2016).

METHODS

- Indian Rhesus macaques (Mamu-A*001, B*008, B*17 defined) were intrarectally (IR) challenged with SIVmac251 (n=11)
- Combination antiretroviral therapy (cART) was initiated day 65 postinfection (TFV, FTC, DTG s.c. q.d.)
- TLR7 agonist treatment was initiated after 400 days of ART suppression.

Placebo	EOW x 10	3 months	EOW x 9	
GS-986 0.1 mg/kg	EOW x 10	3 months	EOW x 9	
GS-9620 0.05 mg/kg	EOW x 10	3 months	EOW x 9	
GS-9620 0.15 mg/kg	EOW x 10	7 months		

- Endpoints

- Viral rebound after stopping cART
- SIV-specific T cell responses
- Monitor immune activation and change in plasma viral RNA
- Perturbation of the reservoir
- Long-term follow up of remission RMs (n=2)
- Viral outgrowth (VOA) and Viral co-culture (VCC) - In vivo CD8 depletion
- Adoptive transfer

RESULTS

Figure 1. SIV plasma RNA rebound kinetics after stopping ART

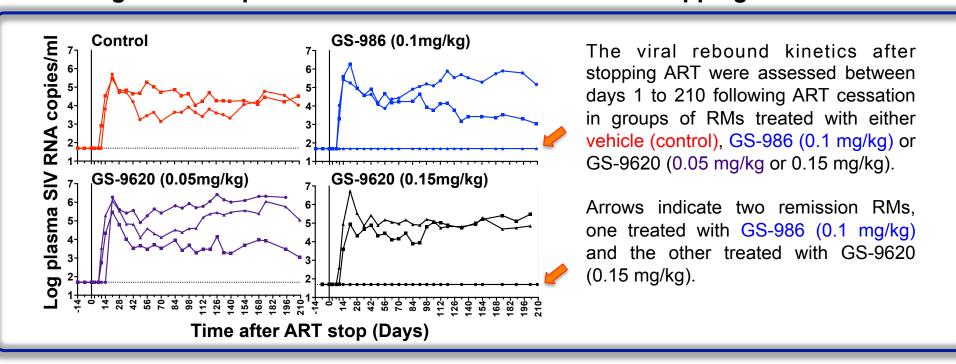
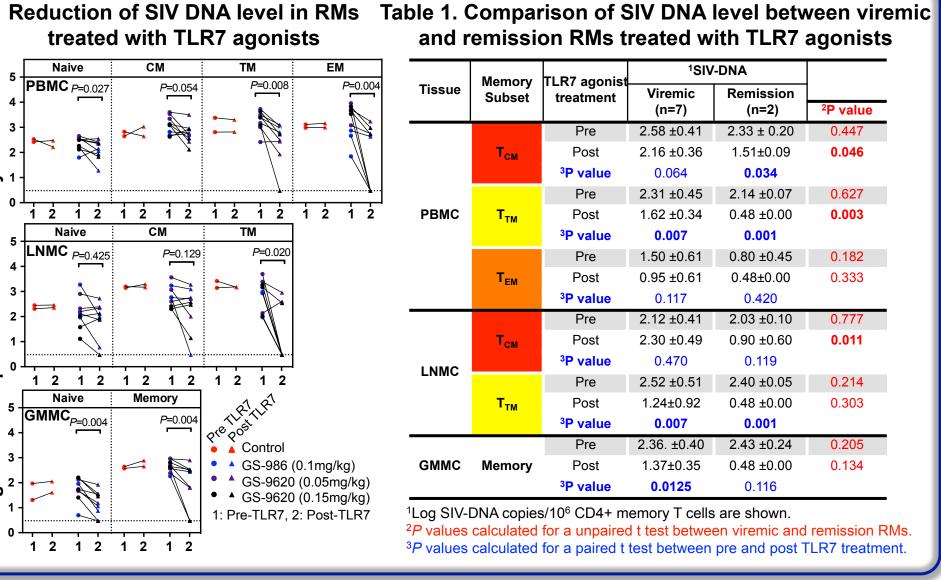
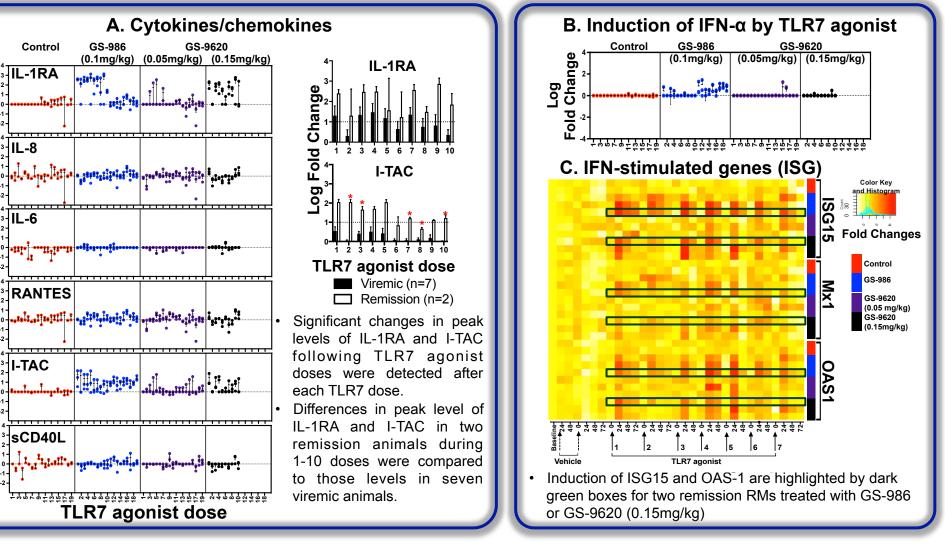
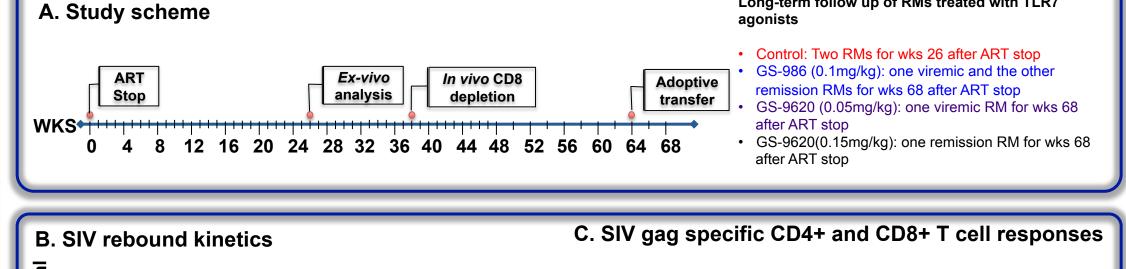
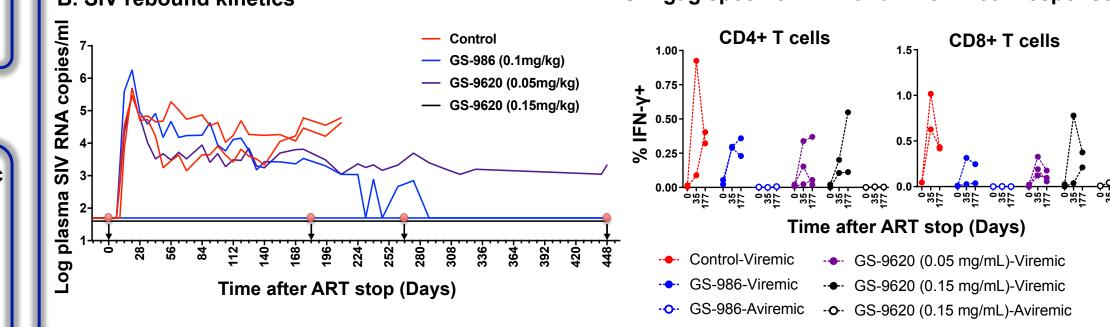
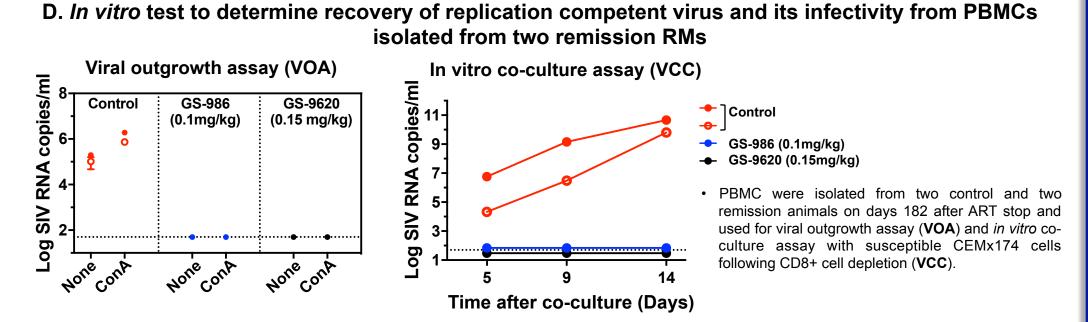
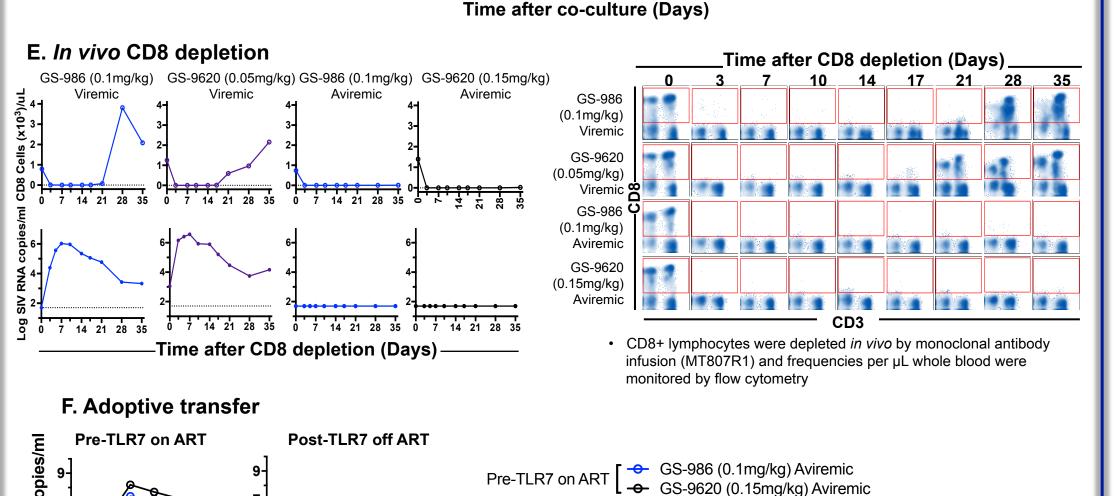


Figure 2. Changes in SIV DNA level in memory CD4 T cells isolated from RMs treated with TLR7 agonists


Figure 3. In vivo induction of cytokines/chemokines and ISGs in RMs following **TLR7** administration



14 21 28 0 3 7 10 14 21 28

Time after adoptive transfer (Days)

Post-TLR7 off ART GS-986 (0.1mg/kg) Aviremic

- GS-9620 (0.15mg/kg) Aviremic

ART or 448 days after ART stop were infused into naïve monkeys.

Both PBMCs and LNMCs isolated from two remission RMs (GS-986 (0.1mg/kg)

Aviremic, GS-9620 (0.15mg/kg) Aviremic) either prior to TLR7 agonist treatment on

CONCLUSIONS

- Consistent with the observed lack of ex-vivo SIV production in both PBMC and LNMC following in vitro ConA stimulation (Whiteny et al. CROI2016), two RMs that received either GS-986 (0.1mg/kg) or GS-9620 (0.15mg/kg) maintained undetectable plasma viral load for >1 yr after stopping ART.
- Comparisons of both virologic and immunologic parameters between seven viremic and two remission RMs following TLR7 agonist administration indicate:
- reduction in cell-associated SIV-DNA from tissue compartments including peripheral blood, lymph node and colorectal mucosa in 67-100 % RMs treated with TLR7 agonists with the most significant decrease in either T_{TM} subset
- a significant reduction of SIV DNA in T_{CM} from both PBMC and LNMC only in two remission RMs following TLR7 treatment
- a significant change in peak level of I-TAC (CXCL11) in two remission RMs compared to seven viremic animals during 1-10 doses of TLR7
- no significant difference in the peak level of IL-1RA in plasma
- no significant difference in mRNA levels of ISGs induced following TLR7 agonist treatment
- Longitudinal assessment of two remission RMs following ART stop showed:
 - uniformly negative VOA and VCC results
 - no detectable SIV specific T cell responses measured by IFNy
- lack of rebound viremia after in vivo CD8+ T cell depletion
- Adoptive transfer of PBMC and LNMC cells isolated 448 days after ART stop did not induce SIV infection in naïve recipients.
- Administration of GS-986 or GS-9620 to SIV+ ART-suppressed RM is safe, can lower viral set-point after rebound or induce durable long-term remission after ART stop.
- Clinical studies of GS-9620 in ART-treated HIV+ participants are ongoing.

ACKNOWLEDGMENTS

This work was supported by Gilead and NIAID grants, AI122942-01, AI091514-01A1 and AI127089-01 to JBW.

Correspondence: jwhitne2@bidmc.harvard.edu