Reaching 90-90-90? Findings After Two Years of HPTN 071 (PopART) intervention in Zambia

PopART

BACKGROUND

he UNAIDS 90-90-90 targets are aimed at substantially decreasing HIV transmission but it is not known whether they can be achieved at scale in transmission butitis
generalised epidemics.
HPTN071 (PopART) is a 3-arm community randomised study in 21 urban
communities in Zambia and the Western Cape of South Africa, with high communities in Zambia and the Western Cape of South Africa, with hig
HIV prevalence and high mobility especially among young adults. The study is testing the impact on HIV incidence of a household-based combination HIV prevention approach (Arms A \& B) provided by community
HIV care providers (CHiPs), compared with standard-of-care (Arm C). IV care providers (CHiPs), compared with standard-of-care (Arm C). In Arm A communities, CHiPs offer universal testing; universal treatment is programme to deliver universal testing and treatment (UTT) at population eve is the largest in Africa, covering a population of $\sim 175,000$ ad We report findings after two annual rounds of delivering the UTT
intervention in 4 communities in Zambia, to determine how close we have come to the $90-90$ targets.

METHODS

The PopART intervention comprises annual rounds of home-based HIV The PopART intervention comprises annual rounds of home-based HIV
counselling and testing delivered by CHiss, and rovision of other HVV-
elated services. CHiPs make repeat visisis to HIV+ individuals during related services. CHiPs make repeat visist, to HIV+ individuals during
each annual round, to support linkage to HIV care and retention on ART. The first "annual round" (R1) was from November 2013 to June 2015 . The first "annual round" (R1) was from November 2013 to June 2015 .
The second annual round (R2) was from June 2015 to October 2016 . ESTIMATION OF NUMBER OF HIV+ ADULTS IN POPULATION All estimates were calculated separately for men and women. All estimates were calculated with stratification on community of
residence and 11 age groups $(18-19$ years, $20-24$ years,...≥ 65 years For R2, estimates were also stratified on participation (yes or no) and
HIV status (HIV-positive, HIV-negative, or unknown) in R1. Among adults (age ≥ 18 years) who participated in $R 2$, we estimated the
the number who were known by the CHiPs to be $H I V+$ in R 2 , because they either confirmed their $H I V+$ status as recorded in R 1 , self-reported they were HIV+ for the first time in $R 2$, or they were
newly diagnosed HIV+ by the CHiPs in $R 2$; newly diagnosed HIV+ by the CHiPs in R2;
an estimated number among those whose $H I V$ status was not
known to C Hips in 2 , because they did not self-report HV Hor Known to $C H I P s$ in $R 2$, because they did not self-report HIV+ nor
accept the offer of HIV testing nor self-report an HIV-negative test in the previous 3 months. We assumed H HV prevalence in this group
was the same as among those who accepted HIV testing in R2. We extrapolated to the total population, by assuming HIV prevalence
among non-participants in R2 was the same as among participants. METHODS AND RESULTS

ESTIMATION OF FIRST AND SECOND 90S Among participants, we calculated: the proportion of $\mathrm{HV}+$ adults who knew their $\mathrm{HIV}+$ status immediately before $R 2$ as the total who self-reported they were HIV
divided by the estimated number of divided by the estimated number of HIV+ adults; the proportion who knew their HIV+ status by the end of $R 2$ as the
total who were known by the CHiPs to be HVV following the
 the proportion who were on ART immediately after the R2 annual
visit, among those who knew their HIV + status, as the total who selfreported they were on ART divided by the number who were known reported they were on ART divided by the number who were known
by the Chips to be $H V+$ immediately following the R2 annual visit; the proportion who were on ART by the end of $R 2$, among those who
knew their $H V+$ status, as the total who self-reported they were on ART at the last CHiP visit made during R2, divided by the number who ART at the last CHiP visit made during R2, divided by the number
were known by the ChiPs to be HVV and they were still resident
according to the last information were known by the CHips to be $\mathrm{HVF+}$ and they were
according to the last information collected during R2.
We extrapolated to the total population, by assuming that knowledge of
HIV + status and ART uptake among non-participants HIV+ status and ART uptake among non-participants in R2 was the
same as among participants before the R2 annual visit and that it did
not change during R2.

PARTICIPATION IN THE INTERVENTION IN ROUND
By the end of August $2016,45,616$ households had been visited by Among visited households, 95% consented to the intervention being (re-) explained to them and to all household members being listed on the
electronic "household member" register maintained by the CHiPs. 110,755 adult residents (aged ≥ 18 years) of these households were isted by August 312016 Overall, $65 \%(3,5388 / 53,486)$ of men and $87 \%(49,648 / 57,269)$ of women participated in $R 2$; the lower figures among men were because
was harder for CHiPs to contact men at home compared with women. ESTIMATED NUMBER OF HIV+ ADULTS IN THE POPULATION Estimated numbers of H HV individuals in the total adult population were
6,216 men and 10,341 women (Table 1). ESTIMATES OF THE FIRST AND SECOND 90S By the end of R2, estimates of the first 90 for men and women were 80% for both men and women (Table 1).

RESULTS AND CONCLUSION

ESTIMATES OF THE FIRST AND SECOND 90S (CONTINUED) At both the start and end of R2, fo both men and women, estimates of the first and second 90 's were considerably higher among those who participated in R1 compared to

FIRST 90 ESTIMATES, BY GENDER AND AGE Immediately before the R2 GEnnual visit, the percentage of below 90%, except for men ≥ 50 years. By the end of R2, $-70-80 \%$ of men aged $18-49$ years knew their $H V+$ status, with figures close to 90% among men aged ≥ 50 years. Immediately before the R 2 annual visit, the percentage of
$H \mathrm{H}+$ women who knew their $H \mathrm{H}$ + status was close to 90%
for for women ≥ 35 years, but much lower for younger women.
By the end of $R 2$, close to 90% of $H V+$ women knew their By the end of $\mathrm{R2}$, close to 90% of $\mathrm{HIV}+\mathrm{w}$
$\mathrm{HIV}+$ status across the whole age range.
SECOND 90 ESTIMATES, BY GENDER AND AGE Immedially fter the P2 annal wisit the percentage of who were on ART among those who knew their HIV status
 younger men. By the end of R 2 , there was an increase
across the whole age range, win figures $>80 \%$ for men ≥ 33
years.
By the end of $R 2$, the percentage of women who were on By the end of R2, the percentage of women who were on
ART among those who knew their $H I V+$ status approached ART among those who knew their H HV + status approached
90% for those aged $\geqslant 35$ years, and in the range $60-80 \%$ for younger wome After two rounds of delivering the PopART intervention, 90%
of HV+ women and $\sim 0 \%$ of $\mathrm{H} \mathrm{V}+\mathrm{men}$ were estimated to
know thei HV + status, know their HIV+ status, approaching the first-90 target. Of those known $\mathrm{HIV}+$, an estimated 80% were on ART,
approaching the second-90 target. approaching the second-90 target. Continuing efforts are needed to speed up linkage to HIV care and ART inititation so as to reach the second-90 targe especially among younger a dultst Reaching the gool of eliminating new HIV infections will be challenging unless 90 .
90 targets are met for young as well as os older adults. Lower coverage in the large number of clients who participated for the first time in Round 2 emphasizes the
need for annual e-visits in urban communities with high rates of mobility and in-migrailo

ACKNOWLEDGMENTS

HPTN 071 is sponsored by the National Institute of Allergy and Infectious Diseases (NIAIDD under Coooperative Aureements UM1-AlO 088619 , UM
A1068617, and UM1-AIO68613, wivth funding from the AO68617, and UM1-A1068613, with funding from the U.S. President's
Imergency Plan for AIDS Relief (PEPFAR) Additional funding is novi Emergency Plan for AIDS Relief (PEPFAR). Addititional funding is provided
by the International Initiative for Impact Evaluation (3ie) with support from
the Bill \& Melinda Gates Foundation, as well as by NIAID, the National by ine inernational initiative for Impact Evaluation (3ie) with support from
the Biil \& Melinda Gates Foundation, as well as by NAIDD, the National
Institute on Drug Ause (NDA) and te National Institute of Mental Heath Institute on Drug Abuse (NIDA) and the National Institute of Mer
(NIMH), all part of the U.S. National Institutes of Health (NIH).
The content is solely the responsibility of the authors and does not
necessarily represent the officicial ${ }^{\text {iewws of the }}$, NAID. NIMH, NIDA, PEPFA necessarily represent the official views of the
3ie, or the Bill \& Melinda Gates Foundation.

