D:A:D

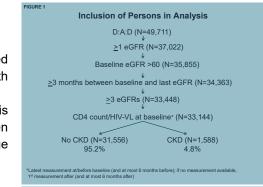
Nature of Immunosuppression and Risk of Chronic Kidney Disease in HIV-positive Persons

L Ryom¹, JD Lundgren¹, P Reiss², M Ross³, O Kirk¹, CA Fux⁴, P Morlat⁵, E Fontas⁶, C Smith⁷, S De Wit⁸, A d'Arminio Monforte⁹, W El Sadr¹⁰, A Phillips⁷, C Sabin⁷, M Law¹¹ and A Mocroft⁷ for the D:A:D Study Group

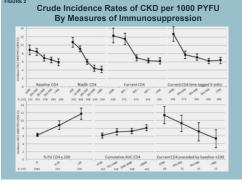
¹ CHIP, Department of Infectious Diseases, Section 2100, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; ²Academic Medical Center, Division of Infectious Diseases and Dept. of Global Health, University of Amsterdam, and HIV Monitoring Foundation, Amsterdam, The Netherlands; ³Division of Nephrology, Mount Sinai School of Medicine, New York, USA; ⁴Clinic for Infectious Diseases and Hospital Hygiene, Kantonsspital Aarau, Switzerland; ⁵Université Bordeaux Segalen, INSERM U 897, CHU de Bordeaux, France; ⁶Nephrology Dept., Public Health Dept., CHU Nice, France; ⁷Research Dept. of Infection and Population Health, UCL, London, United Kingdom; ⁸Division of Infectious Diseases, Saint Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium; ⁹Dipartimento di Scienze della Salute, Clinica di Malattie Infectitive Tropicali, Azienda Ospedaliera-Polo Universitario San Paolo, Milan, Italy; ¹⁰ICAP-Columbia University and Harlem Hospital, New York, USA; ¹¹The Kirby Institute, UNSW Australia, Sydney, Australia

BACKGROUND

- It is well documented that HIV-positive persons are at increased risk of chronic kidney disease (CKD) compared to the general HIV-negative population [1-2]
- Likewise, immunosuppression has, in several studies, been independently associated with CKD [3-7] with a relatively low CKD prevalence in HIV-positive persons with preserved immune function [8]
- As the exact nature of the association between immunosuppression and CKD is unknown, the objectives of this analysis was to investigate the association between various measures of impaired immune function and CKD in the settings of a large heterogeneous cohort


METHODS

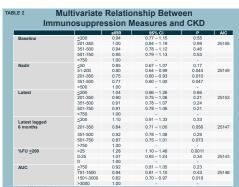
- D:A:D study participants without CKD and with ≥2 Cockcroft Gault (estimated glomerular filtration rate) eGFR measurements after 01-Jan-2004 (baseline) were followed until the earliest of a CKD diagnosis (eGFR<60, confirmed ≥3 months apart), last eGFR plus 6 months or 01-Feb-2014
- Measures of immunosuppression included baseline, current and nadir CD4 count, 6-months' time-lagged CD4 count, % of follow-up time (%FU) with CD4 count <200, time-averaged AUC for CD4 count and CD4 count recovery (baseline CD4 count <200 followed by a current CD4 count >200)
- Poisson regression models were used to determine the relationship between CKD and each measure of immunosuppression (in separate models) accounting for relevant confounders including demographics, viral hepatitis status, hypertension, diabetes, antiretroviral treatment (ART) and other HIV-related factors
- Akaike Information Criteria (AIC) was used to indicate which measures of immunosuppression were better CKD predictors
- The strongest immunosuppression CKD predictor was tested for interactions with the D:A:D CKD risk score, demographics, ART and HIV-related factors

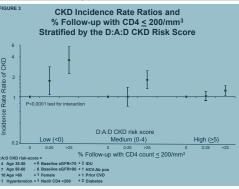

RESULTS

References

Of the 33,144 persons included in analyses 1,588 developed CKD (incidence rate, IR, 7.2 [95%CI 6.8-7.5]/1000 PYFU) during a median 7.2 years FU (IQR 5.0-8.9), Figure 1

		All		CKD	
		N	%	N	%
All		33144	100	1588	4.8
3ender	Male	24510	74.0	1201	75.6
Race	White	15770	47.6	855	53.8
HIV acquisition risk	MSM	15318	4.2	732	46.1
	IDU	4188	12.6	231	14.6
	Heterosexual	11656	35.2	5058	31.8
	Other	1982	6.0	120	7.6
HBV	Positive	150	4.6	75	4.7
HCV	Positive	5947	17.9	350	22.0
ART	Nä ve	7919	23.9	180	11.3
Smoking status	Current	13706	41.4	597	37.6
CVD family history		2538	7.7	163	10.3
Hypertension		2845	8.6	278	17.5
Prior CVD		201	0.6	31	2.0
AIDS		8015	24.2	567	35.7
Diabetes		1206	3.6	170	10.7
HIV-VL < 400	copies/mL	19448	58.7	1105	69.6
		Median	IQR	Median	IQR
\ge	Years	41	35-47	54	46-61
D4 count	/mm ³	440	292-626	413	269-592
Nadir CD4 count	/mm ³	229	108-364	160	65-270
GFR	mL/min./1.73m ²	102	88-118	75	67-85


- Those included in analysis were predominately white (47.6%), male (74.0%) with a baseline median age of 41 years (IQR 35-47) and median CD4 count of 440 (292-626),
 Table 1
- Although the crude IR of CKD varied for different measures of immunosuppression, the rate was consistently higher with more advanced immunosuppression, Figure 2
- Univariately, all measures of immunosuppression were significantly associated with CKD most strongly for nadir CD4 (count >500 vs. <50, IR 0.39 [0.31–0.48]) and %FU CD4 count <200 (>25% vs. 0%, 1.86 [1.62-2.13])
- Multivariately, the strongest CKD predictor was %FU CD4 count <200 (>25% vs. 0%, 1.28 [1.10-1.48]), Table 2
- There was a significant (p<0.0001) interaction between %FU CD4 count <200 and the D:A:D CKD risk score. Those at the lowest estimated CKD risk had a significantly higher CKD IR (>25% vs. 0%, 3.57 [2.23-5.70]) compared to those at the highest estimated CKD risk (>25% vs. 0%, 1.24 [1.05-1.46]), Figure 3
- There was no significant interaction between ethnicity, age, HIV-RNA, ART status or use of nephrotoxic antiretrovirals including tenofovir, atazanavir/r, indinavir and lopinavir/r and measures of immunosuppression for development of CKD


LIMITATIONS

The analysis was limited by the lack of data on proteinuria, and a relatively low proportion of individuals with confirmed Black African ethnicity

CONCLUSIONS

- The strongest association between CKD and immunosuppression was observed for the relative duration of severe immunosuppression
- Immunosuppression was of greatest relative importance as a CKD predictor in persons at low estimated CKD risk, whereas more traditional renal risk factors dominated at higher levels of CKD risk
- On-going analyses are investigating the association between various measure of HIV-viremia and CKD
- These observations support aggressive ART to maintain or restore immune function and thereby reduce the immunosuppression associated increased risk of CKD

Steering Committee: Members indicated wir; c/nair; Chotort Pis: W E-Sadr (*CPCAR), G Calvo' (BASS), F Dabis' (Aquitaine), O Kirk' (EuroSiDA), M Law' (AHOD), A d'Arminio Monforte' (ICONA), L Morfeldt' (HivBiVUS), C Pradier' (Nice), P Reiss' (*AHENA), R Weber' (*SHCS), S De Wit' (Brussels)

Cohort coordinators and data managers: A Lind-Thomsen (coordinator), R Salbel Brandt,

ce), S Mateu, F Torres (BASS), A Blance, R Puhr (AHOD), D Kristensen (EuroSIDA) ttistticians: CA Sabin', AN Phillips', A Mocroft, DA Kamara, CJ Smith x:D coordinating office: CI Hatleberg, L Ryom, A Lind-Thomsen, RS Brandt, D Rabe olgesen, AL Grevsen, JD Lundgren's

Methods of the DAD Oversight Committee. B Fowering in Stotland is a Moderating of Reilly 1. Franquet D-A-D working group experts: Kidney: L Ryom, A Mocroft, O Kirk*, P Reiss*, C Smit, M Ross, CA Fux, P Mortat, E Fontas, DA Kamara, CJ Smith, JD Lundgren 1¢

M Ross, CA Fux, P Mortat, E Fontas, DA Kamara, CJ Smith, JD Lundgren *f Mortality: CJ Smith, L Ryom, Cl Hatleberg, AN Phillips*, R Weber*, P Mortat, C | P Reiss*, N Friis- Møller, J Kowalska, JD Lundgren *f Cancer: CA Sabin*, L Ryom, Cl Hatleberg, M Law*, A d'Arminio Monforte*, F Dabis*,

nert, P. Reiss*, CJ. Smith, DA Kamara, M. Bower, G. Fätkenheuer, A. Grülich, J. D. Lundgren*, S. Manal andpoint reviewer. A Sigl. (CV.D.). P. Melahl (noclogy), J. Si Iversen (nephrology), G. Verestight Committee for The Evaluation of Metabolic Complications of HAART with the committee for the Evaluation of Metabolic Complications of HAART with Committee for the Committee for the Evaluation of Metabolic Scapilications of HAART with the Committee for the Commi

Download poster at: www.cphiv.dk

1. Schouten J, Wit FW, Stolte IG et al. Clin Infect Dis 2014; 2. Lucas GM, Mehta SH, Atta MG, et al. AIDS 2007; 3. Kalayjian RC, Lau B, Mechekano RN et al. AIDS 2012; 4. Jotwani V, Li Y, Grunfeld C et al. Am J Kidney Dis 2011; 5. Ryom L, Mocroft A, Kirk O et al. J Infect Dis 2013; 6. Scherzer R, Gandhi M, Estrella MM et al. AIDS 2014; 7. Mocroft A, Lundgren JD, Ross M et al. PLoS Med 2015; 8. Achhra AC, Mocroft A, Ross MJ, et al. HIV Med 2015