Duke Clinical Research Institut DUKE university medical cente

Cardiovascular Disease Risk Model Comparison and Development in HiV-infected Veterans
Meredith E. Clement MD¹,4,5, Lawrence P. Park PhD ${ }^{1,5,6}$, Ann Marie Navar MD, PhD ${ }^{2,4}$, N. Lance Okeke MD, MPH ${ }^{1}$, Michael Pencina PhD ${ }^{3,4}$, Pamela Douglas MD ${ }^{2,4}$, Susanna Naggie MD, MHS ${ }^{1,4,5}$

1. Division of Infectious Diseases, Duke University, Durham, NC 2. Division of Cardiology, Duke University, Durham, NC. 3. Department of Biostatistics and Bioinformatics, Duke Union infectious Diseases, Duke University, Durham, NC 2. Division of Cardiology, Duke University, Durham, NC. 3. Department of Biostatistics and Bioinformatics,
Universam, NC 4. Duke Clinical Research Institute, Durham, NC 5. Durham VA Medical Center, Durham, NC 6. Duke Global Health Institute, Durham, NC

Introduction

- Persons infected with HIV have a higher risk of cardiovascular disease (CVD) after adjustment for traditional risk factors. ${ }^{1,2}$
- Despite this increased risk, HIV is not accounted for in traditional CVD risk calculations or cholesterol guidelines. ${ }^{3}$

Objective

To evaluate the Pooled Cohort Equations (PCE) ${ }^{3}$ and the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) ${ }^{4}$ model in HIV-infected veterans, and discover a new cardiovascular disease risk prediction model specific to the HIV-infected veteran population.

Methods

- 5-year CVD events in HIV-infected veterans were assessed using the Veterans Affairs (VA) Clinical Case Registry (CCR) from 2005-2010.
- Baseline (1998-2004) laboratory, comorbidity, and medication data were used to determine patien risk scores according to both the PCE and the
D:A:D models.
- Prior history of C

Already receiving statin Women
CVD outcomes included myocardial infarction [MI], stroke, death from coronary heart disease, and fatal stroke.

- Kaplan-Meier analyses and ROC curves were used to compare PCE and D:A:D risk models.
- We developed a new model specific to the HIVinfected veteran population using proportional hazards modeling and PCE event definitions. Backwards selection was performed using a value
of 0.2 for entry; variables with $p \leq 0.05$ were of 0.2 for entry; variables with $p \leq 0.05$ wer kept.

Table 1: Baseline Characteristics for HIV-Infected Veterans ($\mathrm{n}=10233$)		Results Table 2. Univariate and Adjusted Proportional Hazard Models for Cardiovascular Disease Outcomes						
			Univariate Analysis			Multivariable Analysis		
	Count (\%)		HR	95\% CI	p-value	HR	95\% CI	p -value
Age (2004)	49.5 (43.6-55.5)	Age (2004)	1.720	(1.535-1.925)	<0.001	1.788	(1.584-2.016)	<0.001
Black race	4556 (49.3\%)	Black race	1.069	(0.852-1.341)	0.563			
SBP ($\mathbf{m m} \mathbf{H g}$)	128 (118-139)	SBP	1.195	(1.124-1.268)	<0.001	1.154	(1.087-1.224)	<0.001
DBP (mm Hg)	78 (70-85)	DBP	1.057	(1.009-1.086)	0.002			
Total Cholesterol (mg/d)	178 (151-207)	TC	1.023	(1.000-1.045)	0.043	1.042	(1.018-1.063)	0.001
HDL-C (mg/dl)	39 (31-49)	HDL-C	0.994	(0.987-1.001)	0.125	0.992	(0.985-0.999)	0.036
LDL-C (mg/dl)	101 (78-126)	LDL-C	1.002	(0.999-1.005)	0.135			
Smoking	2329 (22.8\%)	Smoking	1.289	(0.999-1.648)	0.047	1.366	(1.055-1.754)	<0.001
CD4 (cells/mm ${ }^{3}$)	408 (244-602)	CD4	0.973	(0.934-1.013)	0.192			
CD4 nadir (cells/mm3)	202 (97-367)	CD4 nadir	0.941	(0.887-0.996)	0.040	0.944	(0.888-1.000)	0.056
CD8 (cells/mm3)	885 (611-124)	CD8	1.000	(0.980-1.020)	0.967			
CD4/CD8 ratio	0.44 (0.26-0.72)	CD4/CD8	0.985	(0.766-1.195)	0.895			
HIV Viral Load (log)	2.60 (1.70-3.81)	HIV VL (\log)	1.116	(1.022-1.218)	0.014	1.210	(1.104-1.324)	<0.001
HCV Coinfection	3604 (39.0\%)	HCV	1.379	(1.102-1.723)	0.005	1.405	(1.114-1.769)	0.004

Abbreviations: TC: total cholesterol, HDLC: high density lipoprorotein, LDLC: Ll low density lipoprotetin, SBP: systolic blood pressure, DBP: diastolic blood pressure, VL: virt
Figure 1: Kaplan-Meier survival probabilities by quintile of risk score for PCE, D:A:D, and new VA model

Figure 2: Receiver operating characteristic (ROC) curve for PCE, D:A:D, and new V/ for PCE,
models

Limitations

The D:A:D model incorporates antiretroviral therapy (ART) as a risk predictor, but we were unable to include ART in our analysis.
Only male veterans were included in the analysis and thus results may not be generalizable.

Summary of Results

- 10,233 male HIV-infected veterans
- 312 (3.05\%) five-year CVD events observed
- As shown in Figure 1 (by quintiles of risk score),
the PCE and D:A:D models performed similarly for risk of outcome.
In the new VA model
- traditional risk factors including age, blood pressure, cholesterol and smoking were associated with increased risk of CVD event.
- HCV coinfection was associated with 40%
increased hazard of CVD event.
- HIV viral load and lower CD4 nadir were also significantly associated with risk of outcome.
PCE, D:A:D, and VA models had similar discrimination by ROC curve

Conclusions

- The PCE and D:A:D models performed similarly for predicting risk of CVD outcome.
- The new VA model takes into account HIV viral load CD4 nadir and HCV coinfection, which were significant risk factors for predicting CVD events.
Yet the new VA model did not demonstrate
Yet the new VA model did not demonstrate
improvement in discrimination above the PCE or improvement in
In the veteran population, traditional risk factors and HIV specific risk factors predict CVD events. HCV co-infection carries the greatest risk of CVD events; this finding requires further investigation in light of new direct acting antiviral therapies.

References Freiberg MS, Chang C-CH, Kuller LH, et al. HIV infection and the risk of acute myocardial inferction. JAMA Intern. Med. 2013;173(8):614-622 Triant VA, Lee H, Hadigan C, Grinspoon SK. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus \qquad Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults J Am Coll Ant--HIV Drugs (D:A:D) study. Eur J Prev Cardiol. April 2015.

