Sexual Behaviour is Associated with Recently Acquired HCV in HIV/HCV Co-infected MSM

Marianne Martinello¹, Gregory J Dore^{1,2}, Jasmine Skurowski¹, Janaki Amin¹, Rohan I Bopage^{3,4}, Robert Finlayson⁵, David Baker⁶, Mark Bloch⁷, Gail V Matthews^{1,2} ¹Kirby Institute, UNSW Australia, ³The Albion Centre, Sydney, Australia, ⁴School of Public Health and Community Medicine, UNSW, Australia, ⁵Taylor Square Private Clinic, Sydney, Australia, ⁵Taylor Square Private Clinic, Sydney, Australia, ⁶East Sydney, Australia, ⁶East Sydney, Australia, ¹Holdsworth House Medical Practice, Sydney, Australia, ⁶East Sydney, Australia, ⁸East Sydney, Australia, ⁹East Sydney, Australia, ⁸East Sydney, Australi

Introduction

Increasing HCV incidence in HIV-positive men-who-havesex-with-men (MSM) has been documented in many countries over the past decade (1-8).

While injecting drug use (IDU) continues to place HIVinfected MSM at greater risk (6), other risk factors for HCV acquisition in MSM include condom-less anal intercourse, higher number of sexual partners, group sex, ulcerogenital sexually transmitted diseases and sexual acts that involve trauma and bleeding (2, 7, 8).

Given the burden of HCV-related disease among HIV coinfected individuals, strategies to enhance HCV assessment, treatment and prevention are urgently needed.

The aim of this analysis was to assess the sociodemographic, sexual behaviour and drug use characteristics of HIV/HCV co-infected individuals in Sydney, Australia, with recent HCV infection.

Methods

The Control and Elimination within Australia of Hepatitis C from people living with HIV (CEASE-D) prospective cohort study aims to characterise the socio-demographic, clinical and behavioural features of HIV/HCV co-infected individuals.

Adults (age \geq 18 years) with HIV and current or prior HCV co-infection (HCV antibody positive) were eligible for study inclusion. This analysis included all participants who identified as MSM enrolled between July 2014 and December 2015 who had completed the enrolment behavioural questionnaire regarding sexual behaviour, drug use and HCV knowledge (n=218). Participants were enrolled through a network of tertiary hospitals (n=1) and primary care providers (n=4) in Sydney, Australia.

Exact logistic regression analysis was used to identify factors associated with recent (≤2 years from enrolment date) HCV acquisition in those with an estimated date of HCV infection (n=199).

Acknowledgements:

The Kirby Institute is funded by the Australian Government Department of Health and Ageing. The views expressed in this publication do not necessarily represent the position of the Australian Government. Research reported in this publication was supported by Gilead Sciences Inc and Merck Sharpe and Dohme as an investigator-initiated study.

Results

218 HIV/HCV co-infected MSM were included for analysis, of whom 25% (n=54) had recent HCV with an estimated duration of infection ≤2 years prior to enrolment.

Enrolment characteristics are summarised in Table 1.

Sexual behaviour and drug use (Table 2 and 3)

- 34% (n=75) had a regular male partner (RMP) (HIV positive 60%, HCV) positive 12%) and 65% casual male partners (CMP).
- Participants with recent HCV infection were significantly more likely to have
- While 73% 'always' or 'sometimes' disclosed their HIV status to male partners, only 43% 'always' or 'sometimes' disclosed their HCV status. 43% 'never' disclosed their HCV status as compared with 14% regarding HIV status.
- IDU ever and current were reported by 82% and 44%, respectively, with amphetamines being the most commonly injected drug (Figure 1)

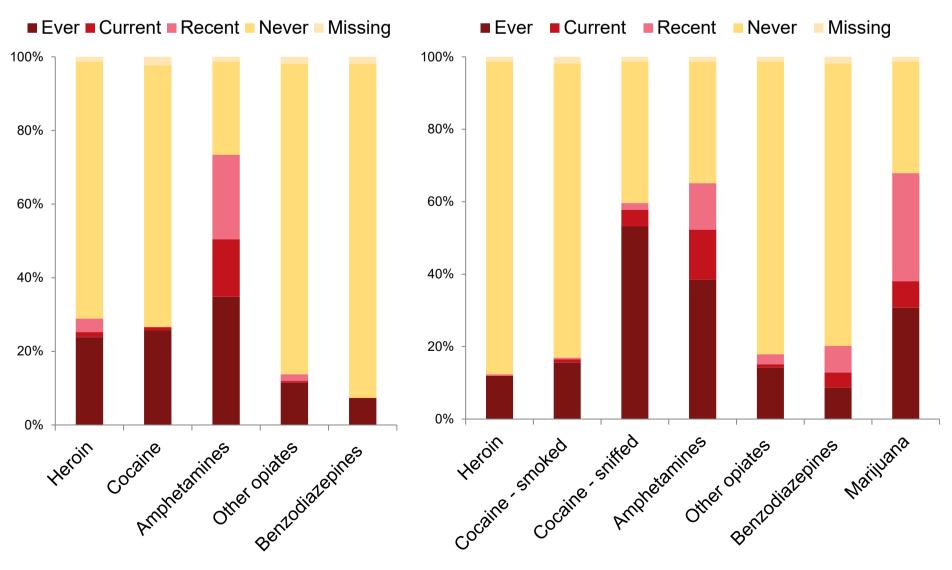


Figure 1. Injecting (Panel A) and non-injecting (Panel B) drug use behaviour. Ever: Drug use, but not in last 6 months. Current: Drug use in previous 6 months. Recent: Drug use in previous 30 days.

References:

1. Matthews GV, Pham ST, Hellard M et al. Patterns and characteristics of hepatitis C transmission clusters among HIV-positive and HIV-negative individuals in the Australian trial in acute hepatitis C. Clin Inf Dis. 6. Gamage DG, Read TR, Bradshaw CS et al. Incidence of hepatitis-C among HIV-negative individuals in the Australian trial in acute hepatitis C. Clin Inf Dis. 6. Gamage DG, Read TR, Bradshaw CS et al. Incidence of hepatitis-C among HIV-negative individuals in the Australian trial in acute hepatitis C. Clin Inf Dis. 6. Gamage DG, Read TR, Bradshaw CS et al. Incidence of hepatitis-C among HIV-negative individuals in the Australian trial in acute hepatitis C. Clin Inf Dis. 6. Gamage DG, Read TR, Bradshaw CS et al. Incidence of hepatitis-C among HIV-negative individuals in the Australian trial in acute hepatitis C. Clin Inf Dis. 6. Gamage DG, Read TR, Bradshaw CS et al. Incidence of hepatitis-C among HIV-negative individuals in the Australian trial in acute hepatitis C. Clin Inf Dis. 6. Gamage DG, Read TR, Bradshaw CS et al. Incidence of hepatitis-C among HIV-negative individuals in the Australian trial in acute hepatitis C. Clin Inf Dis. 6. Gamage DG, Read TR, Bradshaw CS et al. Incidence of hepatitis-C among HIV-negative individuals in the Australian trial in acute hepatitis C. Clin Inf Dis. 6. Gamage DG, Read TR, Bradshaw CS et al. Incidence of hepatitis-C among HIV-negative individuals in the Australian trial in acute hepatitis-C among HIV-negative individuals in the Australian trial in acute hepatitis-C among HIV-negative individuals in the Australian trial in acute hepatitis-C among HIV-negative individuals in the Australian trial in acute hepatitis-C among HIV-negative individuals in the Australian trial in acute hepatitis-C among HIV-negative individuals in the Australian trial in acute hepatitis-C among HIV-negative individuals in the Australian trial in acute hepatitis-C among HIV-negative individuals in the Australian trial in acute hepatitis-C among HIV-negative individuals in the Australian 2011;52(6):803-11

had at least 1 CMP within the previous 6 months (89% versus 60%; p<0.001).

Table 1. Participant enrolment characteristics.

·····	
Clinical and virological characteristics	N=218
Mean age (SD)	48 (9)
Caucasian, n (%)	191 (88
Median CD4 count (IQR)	600 (445,
HIV viral load undetectable, n (%)	152 (70
On cART, n (%)	211 (97
Mode of HCV acquisition	
IDU	113 (52
Sexual exposure	80 (37
Other	25 (11
HCV RNA detected, n (%)	183 (84
HCV genotype, n (%)	
1	107 (58
2	6 (3)
3	43 (24
4	3 (2)
Mixed infection	1 (1)
Unknown/Missing	23 (13
Previous HCV treatment, n (%)	74 (34
Fibroscan performed within 6 months, n (%)	177 (8 ⁻
Liver stiffness measurement (categorised) , n (%)	
<7.1 kPa	111 (63
7.1-9.4	27 (12
9.5-12.5	13 (6)
>12.5	26 (12

Table 2. Injecting and non-injecting drug use behaviour by time since estimated date of HCV infection.

 \leq 2 years (recent, n=54) and >2 years (n=145)

Drug use characteristics		Recent HCV infection	HCV infection >2 years	Р		
IDU, n (%)	Ever	37 (69)	128 (88)	0.002		
	Current	27 (50)	62 (43)	0.565		
Age at 1st IDU, mean (SD)		34 (12)	27 (10)	0.002		
Injecting drug use						
Heroin, n (%)	Ever	1 (2)	58 (40)	<0.001		
	Current	0	11 (8)	0.038		
Amphetamines, n (%)	Ever	33 (61)	115 (79)	0.031		
	Current	25 (46)	53 (37)	0.427		
Other opiates, n (%)	Ever	0	28 (19)	<0.001		
	Current	0	4 (3)	0.576		
Non-injecting drug use						
Amphetamines, n (%)	Ever	38 (70)	97 (67)	0.849		
	Current	27 (50)	31 (21)	<0.001		
Other opiates, n (%)	Ever	3 (6)	33 (23)	0.004		
	Current	2 (4)	6 (4)	1.000		

5. van de Laar T, Pybus O, Bruisten S et al. Evidence of a large, international network of HCV transmission in HIV-positive men who have sex with men. Gastroenterology. 2009;136(5):1609-17. 2011;11:39.

2. Wandeler G, Gsponer T, Bregenzer A et al. Hepatitis C virus infections in the Swiss HIV Cohort Study: a rapidly evolving epidemic. Clin Inf Dis. 2012;55(10):1408-16.

3. Centers for Disease Control and Prevention. Sexual transmission of hepatitis C virus among HIV-infected men who have sex with men--New York City, 2005-2010. MMWR. 2011;60(28):945-50.

4. Schmidt AJ, Rockstroh JK, Vogel M et al. Trouble with bleeding: risk factors for acute hepatitis C among HIV-positive gay men from Germany--a case-control study. PLoS One. 2011;6(3):e17781.

7. Gambotti L, Batisse D, Colin-de-Verdiere N et al. Acute hepatitis C infection in HIV positive men who have sex with men in Paris, France, 2001-2004. Euro surveillance: bulletin Europeen sur les maladies transmissibles.. 2005;10(5):115-7. 8. Danta M, Brown D, Bhagani S et al. Recent epidemic of acute hepatitis C virus in HIV-positive men who have sex with men linked to high-risk sexual behaviours. AIDS. 2007;21(8):983-91.

Table 3. Multivariate logistic regression analysis of factors associated with recent HCV infection in **HIV/HCV** infected MSM.

Time since estimated date of HCV infection $-\leq 2$ years (recent, n=54) and >2 years (n=145).

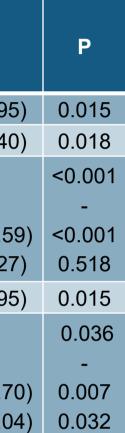
Variables	Recent HCV infection	HCV infection >2 years	OR (95% CI)	Ρ	AOR (95% CI)
Age (per 5 years)			0.73 (0.61, 0.88)	0.001	0.75 (0.60, 0.9
Full or part-time employment	37 (69)	50 (34)	4.14 (2.12, 8.07)	<0.001	2.76 (1.19, 6.40
Mode of HCV acquisition IDU Sexual exposure Other	14 (26) 37 (69) 3 (6)	90 (62) 37 (26) 18 (12)	1.00 6.43 (3.12, 13.26) 1.07 (0.28, 4.12)	- <0.001 0.920	1.00 9.91 (3.84, 25.5 1.64 (0.37, 7.2)
Amphetamine non-IDU – current	27 (50)	31 (21)	3.45 (1.78, 6.80)	<0.001	2.93 (1.24, 6.9
Male partners last 6 months 0-1 2-10 >10	5 (9) 26 (48) 19 (35)	59 (41) 47 (32) 30 (21)	1.00 6.53 (2.33, 18.30) 7.47 (2.54, 21.98)	- <0.001 <0.001	1.00 5.49 (1.61, 18.7 3.98 (1.13, 14.0

HCV knowledge and treatment willingness

- Knowledge regarding behaviours associated with HCV transmission risk was variable (Table 4).
- Only 73% were aware of the potential for HCV reinfection.
- While many participants (57%) were not willing to receive interferon-based HCV therapy, most were willing (69%) to receive interferon-free therapy within the next 12 months (73%).

Table 4. Knowledge regarding behaviours associated with HCV acquisition

Proportion with correct response	N (%)
Sharing needles	190 (87)
Sharing other injecting equipment	160 (73)
Having a sexually transmitted infection	112 (51)
Body piercing and tattoos	134 (62)
Needle-stick injuries	156 (72)
Sharing personal-care items	136 (62)
Condom-less receptive anal sex	163 (75)
Fisting	119 (55)
Bleeding during sex	170 (78)
Sex toys	115 (53)
Sex with multiple partners	112 (51)
Group sex	114 (52)


Conclusion

Recent HCV infection in HIV-positive MSM was associated with younger age, full or part time employment, sexual HCV acquisition, higher number of male partners in the 6 months prior to enrolment and current non-injecting amphetamine use.

Limited knowledge around sexual transmission risk and HCV status disclosure is concerning. Awareness of sexual and drug use behaviour in this population may help target health strategies and interventions.

