A 6-amino-acid insertion/deletion polymorphism in the mucin domain of TIM1 confers protections against HIV-1 infection

f Immunology – University of tent of Biomedical and Clinic Via G.B. Grassi, 74 - 20157 Milan, ITALY Poster: 247

Irma Saulle⁺, Mara Biasin⁺, Michela Masetti⁺, Manuela Sironi⁺, Sergio Lo Caputo[‡], Francesca Vichi[‡], Wbeimar Aguilar-Jimènez[§], Daria Trabattoni⁺, Christian Brander[¶] and Mario Clerici[#]

Scientific Institute for Recovery and Care E. Medea. 23842 Bosisio Parini, Italy: Department of Biomedical and Clinical Sciences. University of Milan. 20157 Milan. Italy: ‡S. Maria Annunziata Hospital. 50121 Florence. Italy: ‡S. Grupo Inmunovirologia Facultad de Medicina. Universidad de Antioquia: Immunogenetics Unit. IrsiCaixa Barcelona, Spain; and IDon C.Gnocchi Foundation, 20148 Milan, Italy

Abstract	Results				
Background: TIM-1 (T-cell immunoglobulin and mucin domain 1), a cell surface glycoprotein, facilitates the entry of enveloped virus including HIV, into host cells. Because the length of the mucin domain of TIM-1 is a critical factor in modulating viral entry, we assessed whether the TIM-1 18-bp insertion/deletion polymorphism associates with susceptibility to HIV-1 infection in three independent cohorts of HIV-exposed seronegative (HESN)	Demographic table Association of Tim-1 18-bp insertion/deletion polymorphism with HIV-1 infection susceptibility				

Methods: The Tim-1 18-bp insertion/deletion polymorphism was genotyped in three case/control cohorts of HIV sexually-exposed HESN and their HIV-1-infected partners with different geographic origin (Italy, Peru and Colombia); data from an additional cohort were retrieved from a previous study conducted in Thailand, CD4+ T lymphocytes purified from 34 healthy controls (HC) grouped according to their TIM-1 genotype were infected in vitro with HIV-1Ba-L and viral replication was assessed after 5 days by measuring viral p24 levels

Results: Homozygosity for the short TIM-1 allele was more common in HESN than in HIV-1 infected subjects in all cohorts. A meta-analysis of the four association analyses, revealing no heterogeneity among samples, yielded a p value of 0.005. These results were reinforced by data showing a significant reduction of HIV replication in CD4+ T lymphocytes of HC that were homozygous for the short TIM-1 allele compared to those carrying at least one long allele (t-test, p= 0.042)

Conclusions: The TIM-1 deletion allele protects from infection with a recessive effect. In vitro infection assays of CD4+ T lymphocytes support this conclusion and underscore a complex interaction between enveloped viruses and TIM molecules that need further investigation.

Background

· Infection of cells by enveloped viruses is a multi-step process requiring both the binding of viral glycoproteins to specific cellular receptors/coreceptors and interactions with accessory molecules whose main function is to locate the virus closer to its receptor(s) [1].

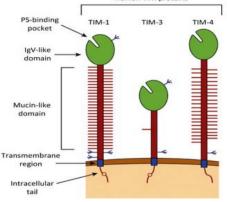
individuals

- Virus internalization occurs when TIM binds phosphatidylserine (PtdSer) on the viral envelope; [2, 3].
- · Structurally, all TIM proteins have a conserved ectodomain consisting of an immunoglobulin (IgV)-like domain and a heavily glycosylated mucin-like domain, anchored to the cell through a transmembrane domain followed by a cytoplasmic tail [3].
- · An 18-bp insertion/deletion polymorphism in the exon, causing a six amino acid insertion/deletion variant (157ins/delMTTTVP), was associated with the risk of developing acute liver failure following HAV infection [4] and to modulate AIDS progression in HIV-1 infected subjects [4].
- The length of the mucin-like domain is critical for enhancing enveloped virus entry [3].
- · TIM-1 molecules with a short mucin-like domain (157delMTTTVP) bind HAV less efficiently than those with a long domain (157insMTTTVP) [5]

Aim of the study

18-bp insertion/deletion polymorphism modulates

susceptibility to HIV-1 infection in independent cohorts


of HESN

Materials and Methods

• The HAVCR1 18-bp insertion/deletion polymorphism was genotyped in three independent cohorts of HIV-1 exposed seronegative individuals (HESN) repeatedly exposed to the virus through unprotected sexual intercourse

• CD4+ T cells isolated by magnetic selection from PBMC of 34 healthy control (HC) volunteers, were divided according to their 18-bp insertion/deletion HAVCR1 genotype and :

- Analysed for TIM-1 mRNA expression levels (RT-Real Time PCR)
- Infected with HIV-1_{Bal} and analysed for viral replication 5 days post-infection (p24 ELISA)

Human TIM proteins

	Italy		Colombia		Peru	
Characteristics	HESN (n=121)	SP (n=110)	HESN (n=63)	SP (n=51)	HESN (n=133)	SP (n=92)
Age, mean yrs. ± SD	40.7±9.1	41.4±8.8	35.1±10.6	33.9±7.5	31.2±10.7	30.8±6.7
Males, n (%)	51 (42.3)	71 (65)	27 (44.2)	26 (50)	123 (90)	94(99)
Viral load, median copies/mL (interquartile range)	nd	10,250 (399- 27,410)	nd	2,569 (488-25,075)	nd	29,694 (11,162-63,381)
CD4+ T cell/µL count, median (interquartile range)	nd	374 (239–553)	nd	366 (190-568)	nd	417 ^a (331-544)
Monthly unprotected sexual episodes, mean (range) ^b	3 (1.5-10)		8 (1 - 30)		7 (1-25)	
Previous history of sexually transmitted diseases and/or AIDS- defining illnesses (%)	nd	39	224	40	29	nd
Heterosexual orientation (%)	100	100	90.5	79.7	17	nd
Homosexual orientation (%)	0	0	2.5	3	44	nd
Bisexual orientation (%)	0	0	7	17.3	39	nd
Ethnicity - Ancestry ⁴ , %	European	European	Afr: 22.6	Afr: 25.5	Mestizo: 89	Mestizo: 100

Origin	Genotype counts (LL/SL/SS)		Genotype counts (recessive) (LL+SL/SS)		Precessi ve	OR (95 CI) ^b	is (Precess	with Thai sample
	HESN	SP	HESN	SP				
Italy	19/57/ 45	20/63/27	76/45	83/27	0.0393	0.549 (0.31- 0.97)		

Colombia	7/24/3 2	5/25/21	31/32	30/21	0.3068	0.68 (0.32- 1.43)	0.0088 , OR: 0.62	0.0050, OR: 0.65
Peru	7/28/9 8	3/29/60	35/98	32/60	0.1732	0.67 (0.38- 1.36)		

SP: Seropositives, HESN: HIV-1 exposed seronegative

^b Logistic regression *p* value for a recessive model ^b Odds ratio (OR) for a recessive model with 95% confidence intervals nalysis p value (recessive model) and Ol

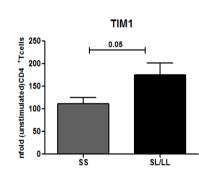


Figure 2, Basal mRNA expression of TIM1 in CD4+ T cells of subjects with SS genotype (grey bars) and heteroSL plus LL genotypes (black bars)

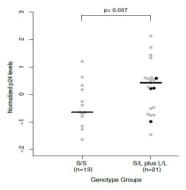
subjects with different TIM1 genotypes 5 days post HIV infection. Mean values an S.E. are shown

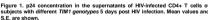
Conclusions

- . The S (short) allele of the 6-amino acid insertion/deletion polymorphism protects from HIV-1 infection with a recessive effect; the protective effect is independent from the route of exposure and ethnic origin
- · CD4 T cells isolated from subjects carrying the S allele sustain lower viral replication compared to L/L S/L genotypes.
- · The protection conferred by the S allele is correlated with a reduction of TIM1 mRNA expression level
- · These results underscore a complex interaction between enveloped viruses and TIM molecules that need further investigation.

References

- 1. Feigelstock, D. Thompson P. Mattoo P. Zhang Y. Kaplan GG. The human homolog of HAVcr-1 codes for a hepatitis A virus cellular receptor, J Virol 1998; 72: 6621-6628
- 2. Jemielity S, Wang JJ, Chan YK. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog 2013; 9: e1003232
- Moller-Tank S. and Maury W. Phosphatidylserine receptors: enhancers of enveloped virus entry and infection. Virology 2014; 468-470: 565-580
- 4. Kim HY, Eyheramonho MB, Pichavant M et al. A polymorphism in TIM1 is associated with susceptibility to severe hepatitis A virus infection in humans. J. Clin. Invest 2011; 121: 111 1118
- 5. Wichukchinda, N, Nakajima T, Saipradit N et al. TIM1 haplotype may control the disease progression to AIDS in a HIV-1-infected female cohort in Thailand. Aids 2010; 24: 1625-1631


TIM1 mRNA expression


Amer: 41.9 Eur: 35.5 100 Amer: 40.

Clinical status of the populations. SP: Seropositives, HESN: HIV-1 exp Afr: African; Amer: Amerindian; Eu Afr: African; Amer: Amerindian; Eur: European Cohort inclusion criteria was CD4 count of above 250 (requested by ethics board) ^b In Peru, this refers to number of partners, not sexual episodes ally transmitted diseases but no AIDS-defining illr

Ancestry of the Colombian cohort was previously reported in (14

HIV-1 infection Assay

