The Effect of Physical Activity on Cardiometabolic Health

 and Inflammation in HIVSahera Dirajalal-Fargo, MS, DO
Instructor of Pediatrics Instructor of Pediatrics Division of Pediatric Infectious Diseases
11100 Euclid Avenue
Cleveland, OH 44106
Phone: (216)844-3644
Sahera.dirajlal-fargo @uhhospitals.org

BACKGROUND

Regular physical activity lowers all-cause mortality by protecting against atherosclerosis and insulin resistance. However, the long term benefits of physical activity, including
preventing diseases associated with chronic inflammation (e.g., type 2 diabetes, atherosclerosis, and rheumatoid arthritis) may be associated an anti-inflammatory effect. In healthy adults, increased physical activity is associated with reduced inflammation independent of cardiovascular disease risk factors. In HIV-infected adults, little is known about the effect of physical activity on inflammatory markers and cardiometabolic health. The aim of this study was to examine the effects of physical activity and statin use on markers of cardiometabolic health and inflammation over 96 weeks.

MATERIALS \& METHODS

Study design: Secondary analysis from a double blind placebo controlled trial
Subjects: SATURN trial criteria: HIV-infected subjects ≥ 18 years of age who were undergoing successful ART and had normal low-density lipoprotein (LDL) cholesterol levels $<130 \mathrm{mg} / \mathrm{dal}$), but who had elevated levels of inflammation and immune activation. All were andomized to receive rosuvastatin (10 mg daily) or placebo

Physical activity:
Assessed using the NIAID ACTG Physical Activity Assessment. This measures reports the number of times subjects participated in one of 27 activities in the past two weeks and on and divided by two to indicate, the amount of physical activity each subject engaged in over the past week.
Inflammation and soluble immune activation markers:
Inflammation and soluble immune activation markers:
$-\mathrm{CD} 4+$ and $\mathrm{CD8}+\mathrm{T}$-cell activation (CD38 and HLA-DR expression)

- Inflammatory (CD14+CD16+) and patrolling (CD14dimCD16+) monocytes
- Plasma markers of monocyte activation: Soluble CD163 (sCD163) and CD14 (sCD14) - Plasma biomarkers of inflammation and endothelial activation

Measures of Cardiovascular Risk:
Mean-max common carotid artery intima-media thickness (CCA-IMT): the maximum IMT of the distal 1 cm of the CCA far wall was measured at 3 separate angles bilaterally
(anterior, lateral, and posterior; 6 total measurements). The mean of the 6 maximum measurements was used for analyses.

- Carotid distensibility was calculated using the same formula [(2**(Ds-Dd)/Dd)/PP] used in the Women's Interagency Health Study (WIHS) and the Multicenter AIDS Cohort Study
(MACS). Ds, systolic diameter; Dd, diastolic diameter; PP, pulse pressure. MACS). Ds, systolic diameter; Dd, diastolic diameter; PP, pulse pressure.
- Flow-mediated dilation (FMD) and hyperemic velocity (VTI) of the brachial artery was
measured by ultrasound with semi-automated edge detection software pre- and post- reactive hyperemia using the forearm occlusion method and 5 minute occlusion time.
- Peircardial fat was quantified from a non-contrast CT scan of the chest.

Analyses: Descriptive statistics were used to describe the sample. Median regression were between exercise and our inflammatory and cardiometabolic variables of interest; median regression were also used to examine the effects of physical activity and statin use on inflammatory and cardiometabolic longitudinal outcomes. For analyzing longitudinal outco
bootstrap procedure for correcting the standard errors of the estimates.

RESULTS SUMMARY

Demographics		
Age (mean)	$45(41,51)$	47 (3, 53)
Male sex	81\%	76\%
African American	69\%	67\%
HIV parameters		
Hiv duration (years)	$11(6-17)$	$12(6-19)$
Current CD4t count	608 (440-848)	627(398-853)
Nadir CD4+ count	173 (84-312)	190 (89-281)
Undetectable viral load (50 copiesesm)	78\%	77\%
ART duration (years)	5.2 (3,1-9.9)	5.9(3,3-9.6)
Current Protease Inhibitor use	50\%	48\%
Curent TDF use	89\%	88\%
Metabolic and cardiovascular r isk factors		
Body Mass Index (kg/m²)	$27(22,3)$	27 (23,30)
Systoicic Blood Pressure (mm Hg)	122 (112,136)	120(110, 132)
Diastoic Blood Pressure, mm Hg	79 (73-85)	80 (72-83)
HDL cholesterol (mg/dL)	47 (38-58)	46 (37-57)
LDL cholesterol (mg/dL)	96 (76-107)	97 (77-121)
Homeostaic Model Assessment of h nusilin resistance (HOMA-RR) 2.5	1.7 (1-2.81)	1.95 (1.13-4.4.4)
Smoking current	43 (60)	50 (67)
Physical exercise		
Mean Overall Physical Activity (minutes per week)	155.10, 150	216 (0-150)

TABLE 2: BASELINE PHYSICAL ACTIVITY WAS ASSOCIATED WITH CARDOMEIABOLIC AND INFLAMMATORY MARKERS

TABLE 4: BASELINE PHYSICAL ACTIVITY WAS ASSOCIATED WITH HOMA-IR AND CAROTID IMT

TABLE 5: PHYSICAL ACTIVITY WAS ASSOCIATED WITH MARKERS OF VASCULAR HEALTH OVER ALL TIME POINTS

CONCLUSIONS

-At baseline, in this HIV+ subjects on ART, self reported physical activity was independently associated with insulin resistance and with several markers of markers of cardiovascular disease
-In addition, over the 96 week study period, exercise was associated with multiple measures of subclinical vascular disease, suggesting that exercise in HIV-infected patients may improve vascular structure as well as function
-This association was evident, even when accounting for statin use
At baseline, exercise was associated with several markers of inflammation, however hese relationships were not evident during the study period -Prospective studies assessing the effect of exercise on inflammation markers and
cardiovascular health are needed in HIV

LIMITATIONS

-Secondary analysis using a self-report recall measure to assess physical activity; data were negatively skewed owing to many subjects reporting no physical activity -Further analyses are planned to better explore the effect of changes in physical activity on changes in inflammation and cardiometabolic outcome

