
Ishani Savant Landry, PhD Associate Director **Clinical Pharmacology & Pharmacometrics** Virology Bristol-Myers Squibb PO Box 4000 Princeton NJ 08543 USA Email: ishani.landry@bms.com Phone: +1 (609) 252 7674

BACKGROUND

- BMS-663068 is a prodrug of BMS-626529, a first-in-class attachment inhibitor that binds to HIV-1 gp120, preventing initial viral attachment and entry into the host CD4+ T cell (Figure 1).¹
- Active against CCR5-, CXCR4- and dual-tropic strains of HIV-1.^{2–5}
- In vitro activity against HIV-1 viruses, except subtype AE and group O.²
- Unique resistance profile with no *in vitro* cross-resistance to other classes of antiretrovirals.^{2,5}
- BMS-663068 is delivered as an extended-release formulation, which is metabolized to the active moiety BMS-626529 by alkaline phosphatase in the gastrointestinal lumen (Figure 2).6
- BMS-626529 is rapidly absorbed due to its efficient membrane permeability.^{2,6} BMS-626529 is a substrate of the P-glycoprotein transporter and is predominately metabolized by an esterase-mediated hydrolysis pathway with contributions from a CYP3A4-mediated oxidative pathway.

Figure 1: BMS-626529 attachment inhibitor: proposed mechanism of action Figure 2: Conversion of BMS-663068 to BMS-626529

- In a Phase IIa BMS-663068 monotherapy study in treatment-naïve and -experienced subjects (AI438006), maximum median changes in plasma HIV-1 RNA of -1.21 to -1.73 log₁₀ c/mL were observed after 8 days of monotherapy.⁷
- BMS-663068 doses of 600 mg + 100 mg ritonavir (RTV) every 12 hours (Q12H); 1200 mg + 100 mg RTV every bedtime; 1200 mg + 100 mg RTV Q12H; 1200 mg Q12H + 100 mg RTV every morning, and 1200 mg Q12H were evaluated.
- AI438011 is an ongoing Phase IIb, dose-finding study in HIV-1-infected, treatment-experienced
- Seven-day BMS-663068 monotherapy substudy, followed by 96 weeks of combination antiretroviral therapy (cART) with raltegravir (RAL) + tenofovir disoproxil fumarate (TDF) (vs. RTV-boosted atazanavir + RAL + TDF).
- BMS-663068 doses of 400 mg BID, 800 mg BID, 600 mg QD and 1200 mg QD evaluated. — A summary of key efficacy data is shown in Table 1.
- Population pharmacokinetic (PPK) and exposure-response (ER) analyses were performed to help select a Phase III dose, using data from AI438011 and AI438006.
- As a 600 mg extended-release formulation of BMS-663068 is available, an additional
- BMS-663068 dose of 600 mg BID (not studied clinically) was evaluated due to clinical interest.

Table 1: Antiviral activity in Al438011

	BMS-663068 400 mg BID	BMS-663068 800 mg BID	BMS-663068 600 mg QD	BMS-663068 1200 mg QD	ATV/r 300/100 mg QD	
	Monotherapy substudy					
Ν	7	5	10	10	-	
Mean change in HIV-1 RNA after 7 days, log ₁₀ c/mL ⁸	-0.7	-1.4	-1.2	-1.5	-	
	cART with TDF (300 mg QD) + RAL (400 mg BID) Modified intent-to-treat analysis					
N	50	49	51	50	51	
Proportion of subjects achieving HIV-1 RNA <50 c/mL through Week 24, % ⁸	80	69	77	72	75	
Proportion of subjects achieving HIV-1 RNA <50 c/mL through Week 48, %*	82	61	69	68	71	

* See CROI poster 545. Thompson et al. (Session P-J1. Tues Feb 24th. 2:30–4:00 pm PST). ATV/r, ritonavir boosted atazanavir; cART, combination antiretroviral therapy RAL, raltegravir; TDF, tenofovir disoproxil fumarate.

OBJECTIVES

- Population PK analysis
- Develop a PPK model for BMS-626529 in HIV-1-infected subjects. — Explore and quantify the potential influence of covariates that contribute significantly to inter-subject differences in BMS-626529 PK parameters.
- Determine post hoc estimates of derived systemic exposure metrics (maximum concentration [C_{max}], concentration at the end of a dosing interval [C_{tau}], and average steady-state concentration [C_{ss avo}]) for BMS-626529 with and without normalizing for viral susceptibility.
- Exposure-response analysis
- Develop models to characterize relationships between BMS-626529 systemic exposures. antiviral response during monotherapy and cART, and key safety parameters. Model-based dose simulation
- Use model-based simulation to predict antiviral response as a function of BMS-626529 exposure for five proposed BMS-663068 dosing regimens.
- Determine an appropriate BMS-663068 dose for use in the Phase III program.

METHODS

Population PK model development

- Non-linear, mixed-effect modeling approach implemented using NONMEM 7.2.0 (first-order conditional estimation model with interaction [FOCEI]).
- Data from Phase II studies AI438006 and AI438011 BMS-663068 doses ranging from 600 mg QD to 1200 mg Q12H (with food)^{7,8}
- BMS-663068 dosed with or without RTV in AI438006⁷
- BMS-663068 extended-release formulation; two formulations used, wet granulation (400 and 600 mg formulations used in Al438011) and dry granulation (Al438006).
- Base model developed using data from AI438011 and then applied to combined data from AI438011 and AI438006, allowing for selected covariates to assist with model stability. - Bioavailability factor included to convert BMS-663068 dose to BMS-626529 based on the relative molecular weights of BMS-663068 and BMS-626529.
- Covariate-parameter relationships investigated including: age, gender, race, treatment experience, laboratory parameters (creatinine clearance, liver enzyme levels, creatinine levels, total bilirubin), baseline disease characteristics (HIV-1 RNA, BMS-626529 IC₅₀, CD4+ T-cell count/%, CD8+ T-cell count/%).
- All covariate-parameter relationships entered into base model to create full model. Step-wise backwards deletion carried out at the *p*<0.001 significance level (increased objective function value <10.83 points, degrees of freedom=1), where the relative influence of each covariate was re-evaluated by deleting it from the full model on an individual basis. Only statistically significant and/or clinically relevant relationships included in the final model
- Model evaluation
- A visual predictive check was used to evaluate the ability of the model to describe the central tendency and variability in exposures of BMS-626529.

Exposure-response analysis

- Exploratory graphical ER analyses were used to investigate potential relationships between BMS-62652 systemic exposure and response variables during BMS-663068 monotherapy and cART, including: — antiviral response during BMS-663068 monotherapy (decline in HIV-1 RNA [log₁₀ copies/mL]
- from baseline) antiviral response as part of cART (HIV-1 RNA <50 copies/mL through Weeks 24/48) - selected AEs (headache, diarrhea, nausea, vomiting and rash) – most frequently observed AEs in the AI438011 and AI438006 trials (other than infections)
- changes in select laboratory parameters (serum albumin, liver enzymes, creatine kinase, amylase, total lipase, hematologic parameters).
- Linear models were used to quantify trends observed between BMS-626529 systemic exposure and antiviral response during BMS-663068 monotherapy.
- With and without normalization for protein binding-adjusted BMS-626529 IC₅₀ (PBAIC₅₀) and log_-transformation.
- Baseline HIV-1 RNA tested as a covariate on the slope of linear models. Logistic regression was used to evaluate possible relationships between BMS-626529 systemic exposure and response as part of cART.

Model-based simulations of BMS-663068 doses

- The final PPK and ER models were implemented in Pharsight Trial Simulator and the following BMS-663068 dosing regimens were evaluated: 400, 600 and 800 mg BID; 600 and 1200 mg QD.
- 600 mg BID dose not studied clinically.
- Simulations incorporated the expected range in baseline PBAIC₅₀ values, resampled at random from baseline IC₅₀ values observed in Al438006 and Al438011. - Simulations were used to estimate the proportion of patients expected to achieve a decreas in HIV-1 RNA from baseline of >1 and >0.5 \log_{10} c/mL for each proposed dosing regimen.

HIV-1 Attachment Inhibitor Prodrug BMS-663068: Pharmacokinetics, Pharmacodynamics and Model-Based Dose Selection

<u>I Savant Landry</u>,¹ L Zhu,¹ M Abutarif,¹ M Hruska,¹ BM Sadler,² M Pitsiu,³ GJ Hanna,¹ DW Boulton,¹ R Bertz¹ ¹Bristol-Myers Squibb, Princeton, NJ, USA; ²ICON plc, Cary, NC, USA; ³ICON plc, Manchester, UK

RESULTS

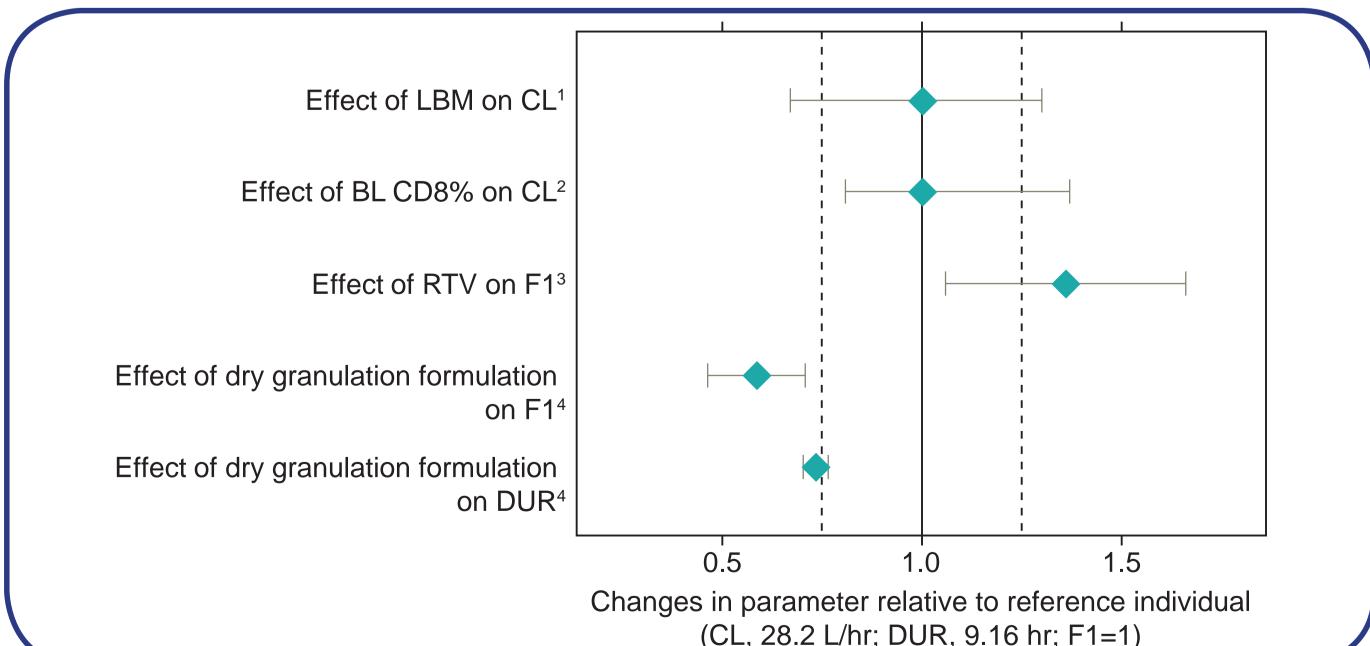
Subject disposition, demographics and disease characteristics

- The PPK analyses included 244 subjects (50 from Al438006 and 194 from Al438011). — A summary of baseline subject demographics and disease characteristics is shown in Table 2.
- The ER analyses performed at the subject level included 209 subjects: — 77 subjects who received BMS-663068 monotherapy (48 from AI438006 and 29 from AI438011).
- 190 subjects who received BMS-663068 as part of cART (AI438011 modified intent-to-treat population).

Table 2: Baseline demographics and disease characteristics

Parameter	Value (N=244) [†]			
Median baseline age, years (range)	40.0 (20–70)			
Median baseline weight, kg (range)	71.0 (40.0–151.3)			
Median baseline LBM, kg (range)	54.0 (32.0–76.0)			
Gender, n (%)				
Male	166 (68)			
Female	78 (32)			
Race, n (%)				
White	122 (50)			
Black/African American	59 (24)			
Asian	2 (1)			
Other*	61 (25)			
BMS-663068 formulation, n (%)				
Dry granulation	50 (20)			
Wet granulation	194 (80)			
Received concomitant ritonavir (Al438006 only), n (%)	40 (16)			
Prior therapy experience, n (%)				
Experienced	210 (86)			
Naïve	34 (14)			
Median baseline HIV-1 RNA, log ₁₀ copies/mL (range)	4.8 (1.7–6.8)			
Median baseline CD4+ T-cell count, cells/mm ³ (range)	271 (32–921)			
Median baseline CD8+ T-cell count, cells/mm ³ (range)	886 (180–3162)			
Median baseline CD4+ T-cell count, % (range)	18 (3–40)			
Median baseline CD8+ T-cell count, % (range)	57 (32–83)			

* Majority of subjects within the "other" category reported themselves as multiracial. † N=240 for CD4+ and CD8+ T-cell counts.


Population PK model

LBM, lean body mass.

- The PK of BMS-626529, following repeat oral administration of BMS-663068 to subjects with HIV-1 infection, were described as:
- a two-compartment model with first-order elimination from the central compartment — an absorption phase with zero-order release into a hypothetical absorption compartment, and first-order absorption into the central compartment.
- Parameter estimates for the final PPK model are shown in Table 3.
- Final covariates that were statistically significant (p < 0.001) on backwards deletion are shown in Figure 3. Although p>0.001, effect of RTV on relative bioavailability was included due to clinical interest and

magnitude of effect (~36% increase in relative bioavailability of the dry granulation formulation).

Figure 3: Predicted fold-change in PK parameters due to covariate effects

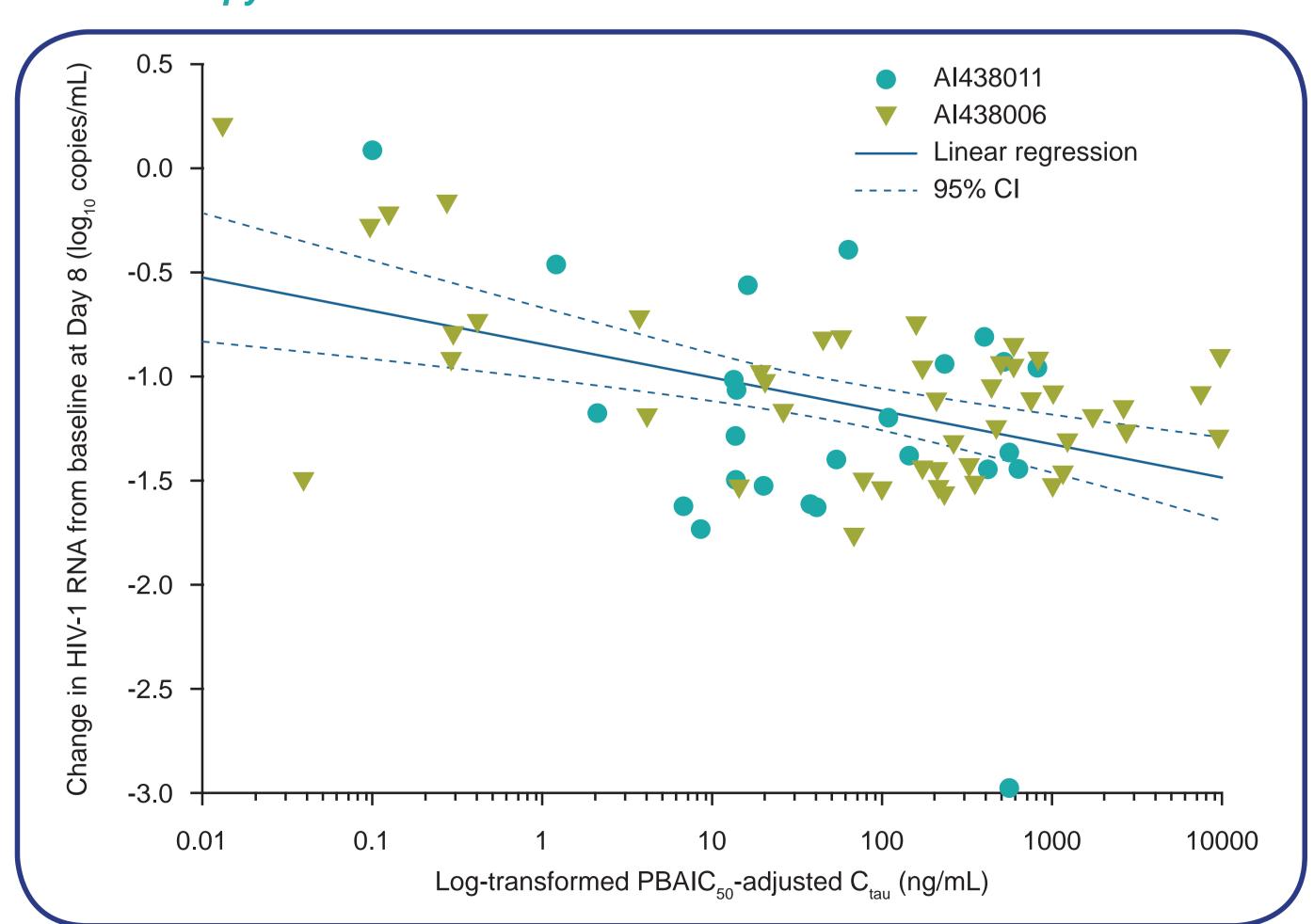
Categorical covariates (RTV. drv granulation formulation): Diamonds represent the estimated change in parameter due to the covariate and whiskers represent the 95% CI of the estimate. Continuous covariates (LBM, BL CD8%): Diamonds represent the reference and whiskers represent the change in parameter at the minimum and maximum value of the covariate (noted on plot). Dashed lines represent 25% change in parameter relative to reference individual.¹Exponent for effect of median-normalized baseline LBM on CL. ²Exponent for effect of median-normalized baseline CD8% on CL. ³Change relative to reference (BMS-663068 dosed without RTV). ⁴Change relative to reference (wet granulation) formulation.

BL, baseline; CL, apparent clearance; DUR, estimated duration of BMS-663068 release from the extended-release formulation; F1. relative bioavailability; LBM, lean body mass; RTV, ritonavir.

Table 3: Parameter estimates for the final PPK model

				95% CI				
Parameter	Units	Estimate (CV, %)	RSE %	Lower	Upper			
Fixed effects								
CL (<i>θ1</i>)	L/hr	28.2	3.39	26.3	30.1			
V2 (<i>θ2</i>)	L	32.3	16.2	22.1	42.5			
ΚΑ (θ3)	hr-1	1.22	9.92	0.983	1.46			
Q (<i>θ4</i>)	L/hr	14.5	5.17	13.0	16.0			
V3 (<i>θ5</i>)	L	85.5	6.32	74.9	96.1			
DUR (θ6)	hr	9.16	1.06	8.97	9.35			
Effect of dry formulation on F1 (θ 7) ¹	-	0.586	10.6	0.464	0.708			
Effect of dry formulation on DUR ($\theta 8$) ¹	-	0.736	2.11	0.706	0.766			
Effect of RTV on F1 ($\theta 9$) ²	-	1.36	11.1	1.06	1.66			
Effect of LBM on CL ($\theta 10$) ³	-	0.770	18.8	0.486	1.05			
Effect of baseline CD8% on CL (θ 11) ⁴	-	-0.548	28.6	-0.856	-2.40			
Inter-individual random effects								
CL, variance	-	0.132 (36.3)	10.8	0.104	0.160			
V2, variance	-	1.12 (106.0)	18.7	0.710	1.53			
V3, variance	-	0.295 (54.3)	18.6	0.187	0.403			
Residual error random effects								
Proportional error	-	0.341 (58.4)	2.12	0.327	0.355			

. Change relative to reference (wet granulation) formulation. 2. Change relative to reference (BMS-663068 dosed without RTV). 3. Exponent for effect of median-normalized baseline LBM on CL. 4. Exponent for effect of median-normalized baseline CD8% on CL. $CL = \theta 1 x (LBM/54)^{\theta_{10}} x (BL CD8\%/57)^{\theta_{11}}$. F1 = 0.81 x $\theta 7^{FORM}$ (if 600 mg dry granulation, FORM = 1, otherwise = 0) x $\theta 9^{RTV}$ (if RTV coadministration, RTV = 1, otherwise = 0): 0.81 converts dose of BMS-663068 to BMS-626529 equivalent. DUR = $\theta 6 \times \theta 8^{\text{FORM}}$

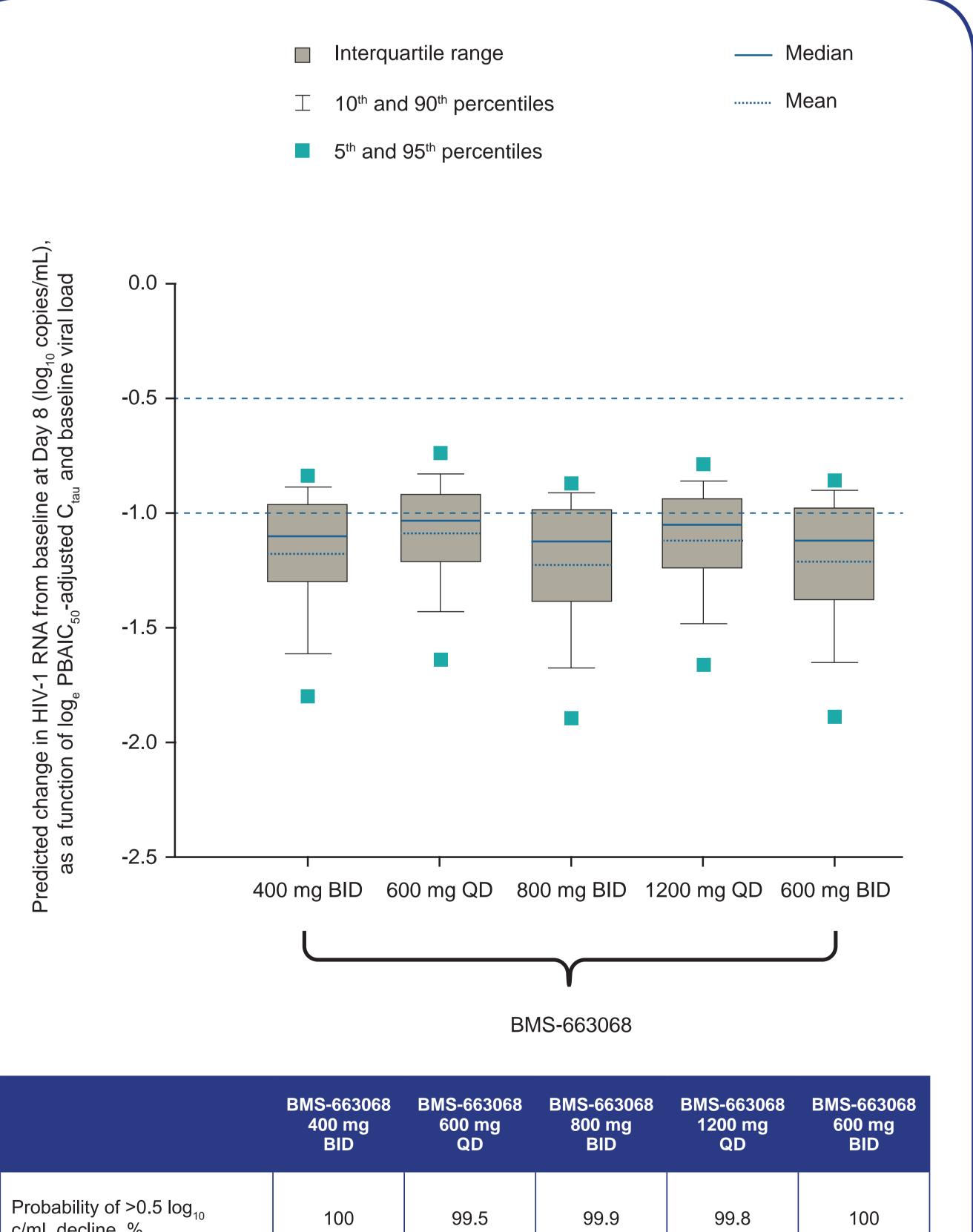

(if 600 ma drv aranulation, FORM = 1, otherwise = 0) CI. 95% confidence interval: BL CD8%, baseline CD8%; CL, apparent oral clearance; CV, coefficient of variation; DUR, estimated elease from the extended-release formulation: F1. relative bioavailability; FORM, formulation; KA, first-order absorption rate constant; LBM, lean body mass; Q, inter-compartmental clearance; RSE, relative standard error of the estimate; RTV, ritonavir; V2, central volume of distribution; V3, peripheral volume of distribution.

Exposure-response analysis

For BMS-663086 given as monotherapy:

- baseline viral drug susceptibility (PBAIC₅₀) was the most influential factor in determining the magnitude of decline in HIV-1 RNA levels during BMS-663068 monotherapy
- the final model used described the relationship between log_-transformed PBAIC₅₀ adjusted C_{ss avo} and C_{tau} and the change in HIV-1 RNA (log₁₀ copies/mL) from baseline after 7 days of treatment (Figure 4)
- no trends were noted for any other efficacy or safety variables during monotherapy.

Figure 4: Relationship between PBAIC -- adjusted C -- and change from baseline in HIV-1 RNA (log₁₀ c/mL) after 7 days of BMS-663068


CI, confidence interval; C_{tau}, concentration at the end of a dosing interval; PBAIC₅₀, protein binding-adjusted half-maximal inhibitory concentration.

- For BMS-663068 given as part of cART: no relationships were observed between BMS-62652 systemic exposure and any efficacy or safety variables during 24 or 48 weeks of combinatior therapy with RAL + TDF (data not shown).
- As no discernable differences were seen between C_{ss.avg} and C_{tau} in predicting HIV-1 decline during monotherapy, C_{tau} was selected for analysis because it is traditionally considered to be a better predictor of antiviral activity.

Model-based simulation of proposed BMS-663068 doses

- Simulations were used to assess the probability of achieving a >0.5 or >1 log₁₀ c/mL decline in HIV-1 RNA after 7 days of BMS-663068 monotherapy, as a function of BMS-626529 log PBAIC₅₀-adjusted C_{tau}, for the five proposed BMS-663068 dosing regimens (Figure 5). — Baseline HIV-1 RNA was included as a significant covariate in response.
- The ER modeling predicted: — a 99–100% probability of achieving a >0.5 \log_{10} c/mL decline in HIV-1 RNA for all proposed
- a 57–73% probability of achieving a >1 \log_{10} c/mL decline in HIV-1 RNA for BMS-663068 400 mg BID, 600 mg QD, and 800 mg BID
- a 61% probability of achieving a >1 \log_{10} c/mL decline in HIV-1 RNA for a BMS-663068 1200 mg QD dose
- a 71% probability of achieving a >1 \log_{10} c/mL decline in HIV-1 RNA for a BMS-663068 600 mg BID dose (not studied clinically).

Figure 5: Probability of achieving a >0.5 and >1 log₁₀ c/mL decline in HIV-1 RNA after 7 days of BMS-663068 monotherapy as a function of log **PBAIC**₅₀-adjusted C_{tau}

	BMS-663068 400 mg BID	BMS-6630 600 mg QD
Probability of >0.5 log ₁₀ c/mL decline, %	100	99.5
Probability of >1 log ₁₀ c/mL decline, %	68.0	57.4

au, concentration at the end of a dosing interval; PBAIC₅₀, protein binding-adjusted half-maximal inhibitory concentration.

72.6

60.8

71.1

CONCLUSIONS

- This modeling and simulation analysis showed that:
- —all proposed BMS-663068 doses had a similar probability (99–100%) of achieving a decline in HIV-1 RNA of >0.5 \log_{10} copies/mL, after 7 days of BMS-663068 monotherapy
- —BID doses had a slightly higher probability of achieving a decline in HIV-1 RNA of >1 \log_{10} copies/mL, compared with QD doses.
- Phase III dose of 600 mg BID was selected based on the following: -600 mg BID dose had a similar or slightly higher probability of achieving a decline in HIV-1 RNA of >1 log_{10} copies/mL following 7 days of BMS-663068 monotherapy, when compared with the 800 mg BID and 1200 mg QD doses, respectively
 - A total daily dose of 1200 mg (1200 mg QD) showed comparable efficacy and safety to a total daily dose of 1600 mg (800 mg BID) when administered as cART for 24/48 weeks in Al438011 (Table 1)^{8,*}
 - 400 mg BID dose excluded as an HIV-1 RNA decline of >1.0 \log_{10} c/mL was not achieved after 7 days of monotherapy in Al438011 (Table 1).⁸
- The 600 mg BID dose is expected to result in a lower C^{max}, compared with 800 mg BID and 1200 mg QD doses, allowing for a greater margin from supratherapeutic doses associated with QTc interval prolongation.
- A supratherapeutic dose of BMS-663068 2400 mg BID was associated with QTc interval prolongation; whereas a dose of 1200 mg QD had no clinically meaningful effect on QTc intervals.⁹
- BMS-663068 may be used in combination with antiretroviral agents, such as RTV-boosted protease inhibitors that may increase BMS-626529 C_{max} by ~50–68%.^{10,†}
- The lower C_{max} estimated for the 600 mg BID dose would minimize the risk of QTc interval prolongation if BMS-663068 was to be coadministered with RTV-boosted protease inhibitors.
- -600 mg BID dose yielded a higher C_{tau} than the 1200 mg QD dose despite comparable efficacy based on quantitative analysis.
- C_{tou} is considered to be an important PK-PD determinant with respect to antiviral effect so the 600 mg BID dose would be expected to maximize efficacy.
- Two accompanying posters are presented:
- *Attachment Inhibitor Prodrug BMS-663068 in Antiretroviral-Experienced Subjects: Week 48 Analysis (Poster 545, Session P-J1, Tuesday, February 24th 2:30–4:00 pm PST). — [†]HIV-1 Attachment Inhibitor Prodrug BMS-663068: Interactions with DRV/r and/or ETR (Poster 523, Session P-H3, Tuesday, February 24th 2:30–4:00 pm PST).

ACKNOWLEDGMENTS

- Bristol-Myers Squibb: Max Lataillade and Samit Joshi.
- Professional medical writing and editorial assistance was provided by Anna Shirazi at MediTech Media and was funded by Bristol-Myers Squibb.

REFERENCES

- 1. Langley DR et al. Proteins 2015; 83: 331–350.
- 2. Nowicka-Sans B *et al.* AAC 2012; 56: 3498–3507.
- 3. Ray N *et al. JAIDS* 2013; 64: 7–15.
- 4. Zhou N et al. JAC 2014; 69: 573-581
- 5. Li Z et al. AAC 2013; 57: 4172–4180.
- 6. Brown J et al. J Pharm Sci 2013; 102: 1742–1751.
- 7. Nettles R et al. JID 2012; 206: 1002–1011.
- 8. Lalezari J et al. CROI 2014: Oral Abstract 86.
- 9. Hruska M *et al*. IWCPHIV 2013; Abstract P_05.
- 10. Zhu L et al. CROI 2013; Abstract 534.