Hongshuo Song ${ }^{1}$, Tanmoy Bhattacharya ${ }^{2}$, Nilu Goonetilleke ${ }^{3}$, Kevin Wiehe ${ }^{1}$, Andrew McMichael ${ }^{3}$, George M. Shaw ${ }^{4}$, Beatrice H. Hahn ${ }^{4}$, Alan S. Perelson ${ }^{2}$, Barton F. Haynes ${ }^{1}$ and Feng Gao ${ }^{1}$ Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA; ${ }^{2}$ Los Alamos National laboratory, Theoretical Division, Los Alamos, NM 87545 , USA; ${ }^{3}$ Weatherall Institute of molecular Medicine, University of Oxford, Oxford OX3 9Ds, England, UK; ${ }^{4}$ Departments of Medicine and Microbiology, Department of ${ }^{4}$ Medicine and ${ }^{5}$ Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA

Abstract

Background: Mutations that revert back to the consensus sequence requently occur in the HIV-1 genome during infection and have been considered to render the viruses more fit. However, their impact on viral fitness and interactions with the immune escape mutations have not been
evaluated in their cognate transmitted/founder (T/F) viral genomes Methods: Our previous study showed that viruses containing both lymphocyte (CTL) escape mutations and reversion mutations are as fit as the T / F viruses. To precisely determine the role of reversion mutations, we
generated the T/F mutants that contained either reversion mutation alone or generated the T/F mutants that contained either reversion mutation alone or ess in primary $\mathrm{CD4} 4^{+} T$ cells using the PASS fitess assay Results: The reversion mutation V247I in the TW10 CTL
could partially restore the fitness loss caused by the CTL escape mutation T242N in the same epitope. However, the reversion mutation V2471 or 164 T in Tat/Rev alone had no measurable impact on fitness of the T / F virus. The CTL detectable fitness cost. Interestingly, the CTL escape mutation G248A, like the reversion mutation V2471, could partially compensate the fitness loss caused by the T242N mutation. Both the V247I and G248A mutations
together fully restored the fitness loss of the T242N mutant. Positions 242 , ogether fully restored the fitness loss of the T242N mutant. Positions 242, therefore should not affect the capsid assembly. In addition, homology modeling of p24 monomers demonstrated that mutations at these positions are not expected to significantly affect stability of the helix 6 structure.
Conclusions: Our results showed that reversion mutations might not render heir cognate T / F virus significantly more fit in vitro but could partially restore the fitness loss caused by the CTL escape mutation, and a CTL escape mutation could also partially compensate the fitness loss due to the other fitness is influenced by the complex interplay of different mutations.

Figure 1. Frequencies of mutation in the TW10 epitope at different time point after infection (A) and the T cell responses to the wild type and mutant TW10 peptides

Figure 2. Schemati presentation of the mutations presentation of the mutations
introduced into the $\mathrm{CH} 77 \mathrm{~T} / \mathrm{F}$ virus (A) and the replication kinetics of the CH77 T/F virus

Figure 4. The V247I or G248A mutation alone did not cause detectable fitness changes in their cognate

Figure 3. Partial restoration of the fitness loss of T242N Figure 3. Partial restoration of the fitess loss of T 242 N
mutant by compensatory mutations V 2471 and G 248 A in
single- and multiple-passage fitness assay.

Figure 5. No detectable fitness cost of the early CT passage fitness assay

Figure 6. No detectable fitness cost of the early reversion mutation 164T in Tat/Rev overlapping region

Figure 7. Structural modeling of mutations in the TW10 epitope in the p24 protein of Gag.

Summary

The reversion mutation V247I or the partial CTL escape mutation G248A alone partially compensates the fitness los caused by the T242N mutation, and both together can fully restore the fitness loss to the T / F level.
Two reversion mutations (V247I and I64T), one early CTL escape mutation (R355K) and one partial CTL , one early CTL escape mutation (R355K) and one partial CTL escape mutation
(G248A) each alone did not cause detectable fitness impact on their cognate T / F virus in vitro.
The CTL escape mutation can also compensate the fitness The CIL escape mutation can also compen

The overall HIV-1 fitness is influenced by a complex interplay of different mutations

