Dual roles of plasmacytoid dendritic cells in HIV-1 infection and pathogenesis

Guangming Li¹, Menglan Cheng², Jun-ichi Nunoya³, Liang Cheng¹, Haitao Guo¹, Haisheng Yu², Yong-jun Liu³, Liguo Zhang²* and Lishan Su¹,²,4*

¹Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. ²Key lab of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. ³Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas, USA. ⁴Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

ABSTRACT

The role of plasmacytoid dendritic cells (pDCs) in human immunodeficiency virus type 1 (HIV-1) infection and pathogenesis is likely important but remains unclear. We have developed a monoclonal antibody that specifically depletes human pDC in humanized mice. The expression of type I interferons (IFN-I) and interferon-stimulated genes (ISGs) are severely impaired by pDC ablation either before or during chronic HIV-1 infection. HIV-1 replication was significantly up-regulated in pDC-depleted mice. Surprisingly, HIV-1 induced depletion of human immune cells including T cells and total human leukocytes was reduced in spite of the increased viral replication. We conclude that pDCs play a role not only in suppressing HIV-1 infection but also in promoting HIV-1 induced pathogenesis. These findings suggest that pDC-depletion or suppression of pDC function would provide a novel approach for HIV-1 therapy.

RESULTS

HIV viremia and pathogenesis in R5/X4 dual tropic HIV-1 infected DKO-hu mice terminated at 3wpi. (A) Viral copy numbers in plasma from mice intravenously inoculated with 1ng p24/mouse of R3A [n = 10]. (B) Summary data for the percentages of HLA-DR+CD38+ CD8 T cells (CD3+CD4-CD8+) in peripheral blood and spleen. (C) Summary data for the percentages of CD3+CD8+CD4- T cell in CD3+ cells. (D) The production of IFN-α2 in plasma from uninfected and infected DKO-hu mice. The relative level of Mx1 and TRIM22 gene expression in huCD45+ cell in spleen. (F) Comparison of absolute CD4 T-cell, CD8 T-cell and huCD45+ leukocyte counts. (A) CD4 T cell (CD3+CD4+) counts. (B) CD8 T cell (CD3+CD8+) counts. (C) huCD45+ leukocyte counts. (D and E) Representative histograms and summarized data show percentages of dead CD4 T cell, CD8 T cell and huCD45+ cell in spleen in R3A infection at 8dpi. All bars in dot graphs indicate median value. * and ** indicate p<0.05 and p<0.01, respectively.

Pre-depletion of pDC abolishes IFN-I induction during acute HIV-1 infection in DKO-hu mice. Humanized Mice were treated with either BDC22 specific (15B) or isotype control (iso) antibody. After pDC depletion, mice were infected with HIV-R3A and terminated on 8dpi. (A) Percentage of pDC (CD4+CD123+) in total hu leukocytes (B) Plasma IFNα2 of uninfected, HIV-1 infected and 15B treated mice were quantified. (C) and (D) The mRNA levels of IFN-I and interferon stimulated genes in purified human cells from spleens. All bars in dot graphs indicate median value. Error bars indicate standard deviations (SD). * and ** indicate p<0.05 and p<0.01, respectively.

Pre-depletion of pDC increases HIV-1 replication. Humanized mice were infected with HIV-1 three days after pDC depletion and terminated at 8dpi (R3A, A and B) or three weeks (JR-CSF, C, D and E) post-infection. (A) Plasma HIV-1 RNA levels at 8dpi. (B) Immunohistochemistry staining for p24 positive cells in spleen. (C) Plasma HIV-1 RNA levels at 2wpi. (D) Representative FACS plots for p24 positive CD4 T cells in spleen at 3wpi. (E) Summarized data of Figure 3d. Bars in dot graphs indicate median value. * indicate p<0.05.

Depletion of pDC reduces HIV-1 pathogenesis in acute infection. Humanized Mice were infected with HIV-1 three days after pDC depletion and terminated at 8dpi. (A, B and C) Cell counts of human T cells (CD3+CD4-CD8-) in total leukocytes in peripheral blood and spleen. (A) CD4 T cell (CD3+CD4+) counts. (B) CD8 T cell (CD3+CD8+) counts. (C) huCD45+ leukocyte counts. (D and E) Representative histograms and summarized data show percentages of dead CD4 T cell, CD8 T cell and huCD45+ cell in spleen in R3A infection at 8dpi. All bars in dot graphs indicate median value. * and ** indicate p<0.05 and p<0.01, respectively.

Depletion of pDC decreases HIV-1 pathogenesis in chronic infection. HIV-1 infected humanized mice were start treatment with 15B at 11wpi and terminated at 21wpi. (A-C) Cell counts of human T cells or total leukocytes in peripheral blood and spleen. (A) CD4 T cell (CD3+CD4+) counts. (B) CD8 T cell (CD3+CD8+) counts. (C) huCD45+ leukocyte counts. (D) Immunohistochemistry staining for human CD45+ cells in spleen. (E and F) Representative histograms and summarized data show percentages of dead CD4 T cell, CD8 T cell and huCD45+ cell in spleen. All bars in dot graphs indicate median value. * indicate p<0.05.

CONCLUSIONS

• pDCs suppress HIV-1 replication in vivo.
• pDCs contribute to HIV-1 infection induced cell death in vivo.
• Depletion of pDCs decrease human cell death.
• Blocking of pDCs function or depletion of pDCs may be a novel treatment for HIV infection.

ACKNOWLEDGEMENTS

University of North Carolina at Chapel Hill
Su lab
Liqun Chi
Anthony Curtis
The University of Texas MD Anderson Cancer Center
Dr Yongjun Liu