Insulin resistance (IR) is a condition in which a greater than normal amount of insulin is required to keep blood glucose levels within the normal range. IR was determined by HOMA mathematical model calculated from the measurement of fasting insulin and glucose. Basic and multivariable logistic regression models were used to evaluate factors associated with IR.

Methods
- Participants with diabetes at baseline and those participants with results for glucose and insulin compared with fasting glucose using formula \(\text{HOMA} = \frac{\text{fasting insulin (μU/mL)} \times \text{fasting glucose (mg/dL)}}{405} \). There was no adjustment for HOMA IR cut off established as clinically relevant.
- For this analysis, a cut of 2 was used, with additional cut offs of 1.75 and 1.80 for sensitivity.
- Analysis of relationship between baseline risk factors and HOMA IR was completed using multiple logistic regression models.
- Baseline variables for use in a regression model included age, sex, body weight, BMI, and smoking history.

Results
- Table 1 shows the study design, treatment groups, participants, and data timepoints for the studies.
- Table 2 shows additional demographic and baseline characteristics of the participants.
- Table 3 shows results for changes in HOMA IR over time and relative to controls (ANOVA). Table 4 shows associations between changes in HOMA IR and potential risk factors for diabetes or IR.

Limitations
- These results should be interpreted with caution because the studies were not primarily designed to assess effects of DTG exposure on IR.
- These analyses are exploratory, and regression coefficients and HOMA IR were not adjusted for multiple comparisons.

Conclusion
- Insulin resistance (IR) is a condition in which a greater than normal amount of insulin is required to keep blood glucose levels within the normal range. IR was determined by HOMA mathematical model calculated from the measurement of fasting insulin and glucose. Basic and multivariable logistic regression models were used to evaluate factors associated with IR.

Conference on Retroviruses and Opportunistic Infections; March 4-7, 2019; Seattle, WA