Characterization of the HIV-1 Transcription Profile after Romidepsin Therapy in vivo

Sara Moron-Lopez1,2, Peggy Kim2, Ole S. Søgaard3, Martin Tolstrup2, Joseph K. Wongj2, Steven A. Yuki1,2

1. University of California San Francisco, San Francisco, CA, USA; 2. San Francisco VA Medical Center, San Francisco, CA, USA; 3. Aarhus University Hospital, Aarhus, Denmark

Introduction

Antiretroviral therapy (ART) cannot eliminate the HIV genomes integrated in latently infected cells, which are a major barrier to cure HIV [1-3]. One strategy to eradicate HIV consists of reactivating viral transcription with latency-reversing agents (LRAs), such as histone deacetylase inhibitors (HDACi).

A recent clinical trial, REDUC part B, analyzed the administration of the therapeutic HIV vaccine Vacc-4x and rhuGM-CSF as local adjuvant, in combination with the latency-reversing agents (LRAs), such as histone deacetylase inhibitors (HDACi). This approach showed an increase in unspliced cell-associated HIV vaccine Vacc-4x and rhuGM-CSF as local adjuvant, in combination with the latency-reversing agents (LRAs), such as histone deacetylase inhibitors (HDACi). However, the mechanism by which romidepsin reverses HIV latency in vivo remains unclear.

Results

Romidepsin increases read-through, total, elongated, and polyadenylated but not multiply-spliced transcripts

Detection of different TAR sequences after romidepsin

Conclusions

1. After romidepsin infusions, we observed:
 - Reactivation of transcriptionally silent proviruses (Fig. 5).
 - An increase in HIV transcriptional initiation and especially elongation, but not completion or multiple splicing (Fig. 3-4).
 - An inverse correlation between time to rebound after AT1 and levels of both total HIV DNA and elongated HIV RNA (Fig. 5).

2. Romidepsin may play a role in strategies to reverse latency, but new approaches are needed to increase HIV transcriptional completion and multiple splicing, which are likely necessary for productive infection and immune recognition/killing of HIV-infected cells.

3. Therapies that increase HIV transcription but do not lead to lethal infections may actually shorten time to rebound after ART.

Limitations

1. The parent study had sequential study interventions (vaccination and then romidepsin), and we did not have access to samples between vaccination and romidepsin.
2. Samples were available from only 9 of 17 total participants, of whom 2 had an increase in viral load after romidepsin.
3. The presence of novel subtypes may have affected viral levels and detection frequencies.

References

Acknowledgments

The authors thank the Lai lab for access to samples from the Lai lab's HIV-1 latency trial and for valuable discussions. This work was supported by the University of California, San Francisco (UCSF) Department of Medicine and Department of Pathology (IK), the National Institute of Allergy and Infectious Diseases at the National Institutes of Health (U01 AI091573, U19AI096109), the National Institute of Diabetes and Digestive and Kidney Diseases at the National Institutes of Health (1R01DK108349), the U.S. Department of Veterans Affairs (IK2 CX000520, I01 BX000192), and the American Foundation for AIDS Research (amfAR) Institute for HIV Cure Research (109301).

Contact:

Steven.yukl@ucsf.edu
4150 Clement Street
San Francisco, CA 94121

Figures

1. Study design and sample processing
2. Blocks to HIV transcription and HIV transcription profile
3. Blocks to HIV transcription and HIV transcription profile
4. Blocks to HIV transcription and HIV transcription profile
5. Blocks to HIV transcription and HIV transcription profile
6. Blocks to HIV transcription and HIV transcription profile
7. Transcriptional interference
8. Elongation
9. Completion
10. Multiplying
11. HIV DNA and elongated transcripts predict time to viral rebound
12. Blocks to HIV transcription before and after romidepsin
13. HIV RNA and HIV transcription profile
14. Transcriptome

Tables

1. Read-through LongLTR PolyA Tat-Rev Romidepsin
2. N=17 N=9 genome targets remains unclear.