Background

- Preterm birth (PTB) is the leading cause of childhood morbidity and mortality
- PTB rates are higher in HIV-infected populations including those on ART
- Stillbirth, only a subset of births result in PTB
- Suggesting risk factors other than HIV infection are also important
- Role of inflammation in PTB needs further study in the setting of HIV
- Immune pathways involved are not clear
- Non-invasive immune markers with predictive value are lacking
- Objective of this study was to determine the association of select markers of inflammation in HIV-infected pregnant women

Methods

Population

- Sampled from Sputum Specimen Collection and Evaluation in Pregnancy (SWEN) trial between 2002-2007
- HIV-infected women started intrapartum nevirapine
- Newborns were randomized to receive one of two interventions:
 - Single dose of nevirapine
 - Extended dose through six weeks after birth
- Enrolled in sites from India, Ethiopia and Uganda

Study Design

- Nested Case-control Study
 - Total N=107; 26 cases and 81 controls
 - Only samples from India
 - Outcome: PTB (<37 weeks gestational age (GA))
 - Exposure: Inflammatory markers collected before labor (21-33 weeks GA)

- 4 biomarkers of inflammation measured using ELISAs:
 - FABP: marker of intestinal barrier dysfunction
 - sCD14 and sCD163: marker of monocyte activation/microbial translocation
 - CRP: acute phase response protein

Analysis

- Differences in covariates by cases or control status assessed by:
 - Fisher’s exact test for categorical variables
 - Wilcoxon rank-sum test for continuous variables
- Odds of PTB per log, increase of each inflammation marker was determined using univariable and multivariable logistic regression

Results

- Odds of PTB with increased levels of Inflammation markers
- Multivariable model

Table 2. Levels of inflammation markers among cases and controls

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All (n=107)</th>
<th>Cases (n=26) (%)</th>
<th>Controls (n=81) (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP (mg/L)</td>
<td>2.43 (1.73-3.26)</td>
<td>4.20 (3.35-5.25)</td>
<td>1.50 (1.24-1.87)</td>
<td>0.04</td>
</tr>
<tr>
<td>Log(CRP)</td>
<td>2.40 (1.73-3.26)</td>
<td>4.20 (3.35-5.25)</td>
<td>1.50 (1.24-1.87)</td>
<td>0.04</td>
</tr>
<tr>
<td>Log(CGHD)</td>
<td>20.67 (20.20)</td>
<td>20.56</td>
<td>20.61</td>
<td>0.49</td>
</tr>
<tr>
<td>Log(CGHD)3</td>
<td>20.67 (20.20)</td>
<td>20.56</td>
<td>20.61</td>
<td>0.49</td>
</tr>
<tr>
<td>Log(SCD14)</td>
<td>9.33 (9.10-10.00)</td>
<td>9.65 (9.65-10.00)</td>
<td>9.73 (9.65-10.00)</td>
<td>0.03</td>
</tr>
<tr>
<td>Log(SFABP)</td>
<td>19.43</td>
<td>19.43</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Log(SFABP)</td>
<td>19.43</td>
<td>19.43</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Association of pregnancy inflammation markers with PTB

<table>
<thead>
<tr>
<th>Univariable Model</th>
<th>Odds ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP</td>
<td>0.86 (0.63-1.17)</td>
<td>0.32</td>
</tr>
<tr>
<td>Log(CRP)</td>
<td>1.30 (1.01-1.69)</td>
<td>0.04</td>
</tr>
<tr>
<td>Log(CGHD)3</td>
<td>1.30 (1.01-1.69)</td>
<td>0.04</td>
</tr>
<tr>
<td>Log(SCD14)</td>
<td>1.30 (1.01-1.69)</td>
<td>0.04</td>
</tr>
<tr>
<td>Log(SFABP)</td>
<td>1.30 (1.01-1.69)</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Multivariable model adjusted to maximal age, BMI, education, parity, history of previous PTB, inverness, CD4+ T-cell count and viral load (at time of inflammation assessment), and maternal HIV treatment during pregnancy.

Conclusions

- In our analyses, there was an increased odds of PTB with increased levels of Inflammation markers
- Multivariable model adjusted to maximal age, BMI, education, parity, history of previous PTB, inverness, CD4+ T-cell count and viral load (at time of inflammation assessment), and maternal HIV treatment during pregnancy.

Acknowledgements

We are grateful to all the study participants and study team members of the SWEN trial. Support was provided by the National Institutes of Health (grants AI069497, AI45462, D43 TW0000, UM1 R01 AI45462, D43 TW0000, and AI45462, D43 TW0000). Additional support was provided by the U.S. Agency for International Development (grants AID-0000, and AI45462, D43 TW0000). A study team member who also received support from the Bill & Melinda Gates Foundation is also a co-author of this paper. The authors declare no conflicts of interest in this paper.