CONTRACEPTIVE STUDY

METHODS

CONCLUSIONS

REFERENCES

ACKNOWLEDGMENTS

HIV Genital Tract Shedding While on Progestin Contraception

Julie AE Nelson1, Jeffrey Wiener2, Jennifer H Tang3, Lameck Chinula3, Stacey Hurst2, Gerald Tegha3, Albans Msiaka3, Mina C Hosseinipour3, Lisa B Haddad3, Athena P Kourtis2

1Univ of North Carolina at Chapel Hill, Chapel Hill, NC, 2US Centers for Disease Control and Prevention, Atlanta, GA, 3UNC Project-Malawi, Lilongwe, Malawi

*Emory University, Atlanta, GA

Table 1. HIV was more often detected in TearFlo than CVL for both on and off ART.

Table 2: Among women on ART in the two study arms, there was no difference in relative risk (RR) in HIV shedding by contraceptive assigned or type of specimen tested.

• Compare HIV detection between cervicovaginal lavage (CVL) and cervical TearFlo Strips
• Compare genital HIV shedding before and after progestin contraception initiation
• Compare genital HIV shedding in women by type of progestin contraception (DMPA injectable vs LNG implant)

• CVL (10ml) was spun to remove cells and 1ml aliquots were frozen. Cells were separated frozen.
• 2 TearFlo strips were collected together and frozen in one tube.
• HIV-1 RNA measured in CVL fuel and TearFlo using Abbott RealTime assay.
• 73 HIV-infected
• 90 HIV-infected

• Inclusion criteria:
 • 1) Pregnant
 • 2) Current use of any hormonal contraceptive method
 • 3) Desire to become pregnant within the next 12 months
 • 4) Untreated visible genital ulcers or lesions on rectal pelvic examination
 • 5) Known or suspected genital tract cancer
 • 6) Contraceptives to CVL or LNG implant
 • 7) Willing to be abstinent or use condoms for 6-6 weeks

Inclusion criteria:
• 1) Female aged 18-45 years with known HIV status
• 2) Regular, monthly cycles (>21-35 days) in preceding three months
• 3) Off hormonal or intrauterine contraception for at least 6 months
• 4) At least 6 months postpartum
• 5) Interested in family planning, specifically contraception
• 6) HIV status
• 7) Willing to be absent

• Women on ART (both arms)
• Women not on ART (both arms)

• CVL (up to 200 copies/ml) vs. TearFlo (up to 5000 copies/strip)
• CVL (up to 200 copies/ml) vs. TearFlo (up to 5000 copies/strip)

1) Pregnancy
2) Current use of any hormonal contraceptive method
3) Desire to become pregnant within the next 12 months
4) Untreated visible genital ulcers or lesions on rectal pelvic examination
5) Known or suspected genital tract cancer
6) Willing to be absent or use condoms for 6-6 weeks

Women on ART (both arms)

Women not on ART (both arms)

• HIV-1 RNA measured in CVL fluid and TearFlo using Abbott RealTime assay
• CVL fuel
• TearFlo

• Table 2 among women on ART in the two study arms, there was no difference in relative risk (RR) in HIV shedding by contraceptive assigned or type of specimen tested.

• ** Data for TearFlo has not been adjusted for volume.
• * Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

• ** Data for TearFlo has not been adjusted for volume.
• * Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

• CVL HIV RNA = 1,544 copies/ml
• TearFlo HIV RNA = 1,797 copies/ml
• CVL HIV DNA = 1,047 copies/pellet

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

• ** Data for TearFlo has not been adjusted for volume.
• * Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

• CVL HIV RNA = 1,544 copies/ml
• TearFlo HIV RNA = 1,797 copies/ml
• CVL HIV DNA = 1,047 copies/pellet

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

• Compared to baseline plasma HIV VL and CD4.

• CVL HIV RNA = 1,544 copies/ml
• TearFlo HIV RNA = 1,797 copies/ml
• CVL HIV DNA = 1,047 copies/pellet

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

• CVL HIV RNA = 1,544 copies/ml
• TearFlo HIV RNA = 1,797 copies/ml
• CVL HIV DNA = 1,047 copies/pellet

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

• CVL HIV RNA = 1,544 copies/ml
• TearFlo HIV RNA = 1,797 copies/ml
• CVL HIV DNA = 1,047 copies/pellet

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

** Data for TearFlo has not been adjusted for volume.
* Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

• HIV-1 RNA measured in CVL fluid and TearFlo using Abbott RealTime assay
• CVL fuel
• TearFlo

• Table 2 among women on ART in the two study arms, there was no difference in relative risk (RR) in HIV shedding by contraceptive assigned or type of specimen tested.

• ** Data for TearFlo has not been adjusted for volume.
• * Results from multivariable regression model fit using generalized estimating equations adjusted for baseline plasma HIV VL and CD4.

We thank Kara Complement for excellent technical support and Sashca Elliott for assistance with protocol development and project management. We would like to thank the Litongwe District Management Team for their support of our study and The LightHouse Trust and Area 25 Health Centre for allowing us to inform potential participants about the study at their clinics. This study was funded by the Bill & Melinda Gates Foundation, and the U.S. Agency for International Development.

The findings and conclusions are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.