To evaluate the pro-thrombotic effects of ABC in a validated animal model in vivo of thrombosis.

METHOD: Ferric chloride-induced model of thrombosis

Ferric chloride (FeCl₃)-induced thrombosis is one of the most widely used methods to induce thrombosis in vivo.

Experimental protocol

- Mouse strains used: C57BL/6 Wild-type (WT) and P2xr Knock-out (KO) mice.
- Microroculation in cremasteric arteries was observed by intravital microscopy. The parameter measured was time to occlusion (s). Videos were recorded until flow cessation or during a 8-min period (±80 s, if no occlusion occurred).
- FeCl₃ 25 mM (a concentration selected after a dose-dependent evaluation and which, by itself, does not induce thrombus formation) was superfused over the cremastectomy preparation.

Care was taken to select clinically relevant concentrations of the following drugs:

- Diclofenac
- Thrombolytic
- Aspirin
- abciximab
- Sodium (NaCl)
- Glucose (Glc)
- ATP (ADP), 2.5 × 10⁻³ M
- Tamm-Horsfall (THP)
- Thromboxane (TX)
- ATP (adenosine triphosphate)

RESULTS

1. ABC significantly accelerates vessel occlusion in a dose-dependent manner.

2. The pro-thrombotic effect of ABC involves activation of the P2X₇ receptor.

REFERENCES