Ibalizumab (IBA) is a long-acting humanized monoclonal antibody that binds to the second extracellular domain of the CD4 receptor. It is currently in Phase 3 development for treatment of multi-drug resistant (MDR) HIV-1 infection. IBA has been safely administered intravenously (IV) and subcutaneously (SC) in previous clinical trials. In this ongoing adaptive design study, we aimed to investigate safety, pharmacokinetics (PK), antiviral activity, and pharmacodynamics (PD) of intramuscular (IM) administration. This report is limited to results of the 800 mg and 2000 mg IM dose groups as it offers direct comparison to the previous Phase 2 IV administration trial in patients with MDR HIV which studied the same dosages.

Pharmacokinetics

PK Parameters, Mean (SD)

<table>
<thead>
<tr>
<th>Dose (mg)</th>
<th>Route</th>
<th>No. of dose</th>
<th>Tmax (day)</th>
<th>Cmax (μg/mL)</th>
<th>AUC (day*μg/mL)</th>
<th>T90% Capacity hindered (day)</th>
<th>T90% non-Capacity hindered (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>IM</td>
<td>3</td>
<td>(0.35)</td>
<td>85.23 (19.43)</td>
<td>742.82 (291.99)</td>
<td>3.67 (1.09)</td>
<td>0.75 (0.19)</td>
</tr>
<tr>
<td>IV</td>
<td>6</td>
<td>1.09</td>
<td>(2.64)</td>
<td>256.46</td>
<td>1833.83</td>
<td>3.59 (1.48)</td>
<td>0.74 (0.32)</td>
</tr>
<tr>
<td>2000</td>
<td>IM</td>
<td>2</td>
<td>(2.86)</td>
<td>241.24</td>
<td>3733.86</td>
<td>5.43 (1.59)</td>
<td>0.97 (0.56)</td>
</tr>
<tr>
<td>IV</td>
<td>3</td>
<td>0.01</td>
<td>(0.00)</td>
<td>712.90</td>
<td>5281.24</td>
<td>5.81 (1.39)</td>
<td>0.87 (0.46)</td>
</tr>
</tbody>
</table>

TMB-121: Phase 1/2, randomized, placebo-controlled study of IBA SC/IM injection
- **Cohort 1:** HIV-infected patients with HIV-1 RNA ≤5000 copies and who have not received antiretroviral (ARV) treatment for at least one year
- **Cohort 1 Arms E and F:** 100% male, 100% Asian, mean age 27 years, mean weight 64 kg, mean baseline viral load (VL) 57,000 copies/mL, mean baseline CD4+ T cell count 336

TMB-202: Phase 2b, randomized, double-blinded study of IBA IV injection
- HIV-infected patients with HIV-1 RNA >1000 copies who have been receiving HAART for at least 6 months and were to be failing, or were to have recently failed (i.e., in the last 8 weeks) therapy
- 89% male, 62% White and 24% Black, mean age 48 years, mean weight 81 kg, mean baseline VL 125,000 copies/mL, mean baseline CD4+ T cell count 109
- The two dose regimens were randomly assigned in a 1:1 ratio

Antiviral Activity

IM (monotherapy): the maximum HIV VL reduction (1.2 log_{10} for 800 mg dose and 0.8 log_{10} for 2000 mg dose) occurred at Day 7 post-dose and rebounded to near baseline levels after 1-2 weeks. The VL rebound was likely due to resistance development with monotherapy.

IV (plus OBR): the HIV VL reduction were maintained ≥ 1.0 log_{10} during the 24-week study period.

Safety and Tolerability

IM: no serious adverse events (SAE) or discontinuations. No injection site reactions or anti-drug antibodies. The most frequent AE was fever.

IV: 10 SAEs, none related to study drug; 2 discontinued with AEs; 2 discontinued with AEs considered related to study drug - hypersensitivity and rash.
- The most frequent drug-related AE was rash.

Summary of Adverse Events (AEs)

IM (monotherapy):
- 80% of subjects experienced at least one AE
- 57% of subjects experienced an AE of grade 3 or 4
- 15% of subjects experienced an AE leading to discontinuation

IV (plus OBR):
- 80% of subjects experienced at least one AE
- 53% of subjects experienced an AE of grade 3 or 4
- 10% of subjects experienced an AE leading to discontinuation

Conclusion

The PK profiles of biweekly 800 mg IBA and monthly 2000 mg IBA administered IM were comparable with IV profiles from a previous study. Both dosages of IBA administered IM were safe, well tolerated, and produced clinically significant viral load reductions at Day 7 as monotherapy. These data warrant further development of the IM administration of IBA.