Prevalence of minority resistant and X4 variants in HIV-2 naïve patients: ANRS COS Cohort
Alexandre Storto1-3, Benoît Visseaux1,3, Gilles Collin1,3, Catherine Fagard1, Marine Naudin2, Florence Damond1,3, Marie-Aude Khuong2, Sophie Matheron1-3, Diane Descamps1 and Charlotte Charpentier1-3

1. INSERM, IAM, UMR 1137, F-75018 Paris, France; 2. Université Paris Diderot, IAM, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France; 3. AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, F-75018 Paris, France; 4. INSERM & Univ. Bordeaux, ISPED, Centre INSERM U987-Epidemiologie-Biostatistique, Bordeaux, France; 5. INSERM, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, F-33000 Bordeaux; Université Bordeaux, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, Bordeaux, France; 6. Hôpital Delafontaine, Service des Maladies Infectieuses et Tropicales, F-93200 Saint Denis, France; 7. AP-HP, Hôpital Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, F-75018 Paris, France. E-mail: charlotte.charpentier@aphp.fr

The aim of this study was to assess the prevalence of MRV and X4-minority variants in an HIV-2 infected naive population.

Background

- HIV-2 represents a unique model of reduced HIV pathogenesis.
- HIV-1 minority resistant variants (MRV) can increase risk of virological failure if they are detected before antiretroviral treatment (Li et al., JAMA, 2011; Coci-Leprü et al., J Antimicrob Chemother, 2015).
- In HIV-2 infection, no data are available on MRV.
- The aim of this study was to assess the prevalence of MRV and X4-minority variants in antiretroviral-naive HIV-2 infected patients.

Patients and methods

- We assessed 47 HIV-2-infected antiretroviral-naive patients with detectable plasma viral load (>100 c/ml), included in the French HIV-2 ANRS COS Cohort.
- Ultra-deep Sequencing (UDS) (Roche 454® Junior) was performed in protease and reverse transcriptase regions.
- Mutations >1% were considered and interpreted with HIV-2 ANRS list.
- Among the list of mutations we only retained mutation present in less than 10 % of sequence issued from ARV-naïve patients.

Results

Table 1: Characteristics of patients (n = 47)

Median age	47 years (IQR = 36 – 54)
Origin	72% West Africa
CDC stage C	15%
HIV-2 Group A:	68% / B: 32%
Median CD4 cell count	328/mm² (IQR = 216 – 428)
Median viral load (VLS)	1967 c/ml (IQR = 718 – 4188)

Protease and RT UDS results

- Protease UDS was successful in 41 samples (87%).
- Reverse transcriptase UDS was successful in 38 samples (81%).
- Prevalence of drug resistance mutations (DRM) in protease or reverse transcriptase:
 - 20% detection threshold: 7.9% (95%CI = 0.0 – 16.5).
 - 1% detection threshold: 21.9% (95%CI = 8.8 – 35.1).

Tropism UDS analyze

- Tropism was assessed in 19 samples.
- Mean number of reads = 7503 (IQR = 5536 – 10540).
- 2 patients (11%) exhibited X4-tropic virus in more than 50% of the reads.
- Among the 17 patients exhibiting R5-tropic viruses in majority, 11 (65%) displayed minority X4 variants.
- Minority X4 variants were present in a median proportion of 0.41% (IQR = 0.33 – 0.47).

Conclusion

- In this first study assessing the prevalence of MRV in HIV-2 infection, we observed a two to three-fold higher prevalence of DRM in antiretroviral-naive patients when 1% detection threshold of mutations was used compared to 20% threshold.
- Similar results between the two technologies have been described in HIV-1 antiretroviral-naive patients (Vodeca et al., JIDMRW 2015; Simon et al., J Infect Dis, 2009).
- In addition, X4 minority variants were detected in the majority of patients.
- This survey showed moderate transmitted drug resistance prevalence. Even if there is no need to test for baseline genotypic resistance in clinical practice with this prevalence rate, these data do show the need to establish a longitudinal survey on TDR in HIV-2 patients in France.