Chronic low-level HIV-1 tat expression promotes a neurodegenerative phenotype

Alfred C. Chin1, Alex M. Dickens1, Amanda L. Trout1, Jacqueline Lovett1, Joelle Dorskind1, Norman J. Haughey1

1Richard T. Johnson Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, US

Introduction: HIV associated neurological disorders (HAND) continue to be a significant cause of morbidity, and are associated with increased mortality in HIV infected individuals. Although the precise mechanisms for these neurological complications remains unclear, MRI studies have revealed age-related changes in brain volume of HIV-infected subjects despite stable cART. It has long been postulated that low level production of non-structural proteins from Nef/Nef-like genes may contribute to neurological damage. However, this hypothesis has not been experimentally tested. In this study we took advantage of a leaky Tetracycline-inducible promoter in the rtTA-Tat transgenic mouse to determine that very low level Tat production is associated with neuronal damage over time.

Methods: Animals: 11-12 month old (n = 14) gial fibrillary acidic protein (GFAP)-driven doxycycline-inducible HIV-1 Tat transgenic mice were used for this study. Induced mice (rtTA-Tat/Dox, n = 7) received doxycycline for 21 days to induce tat gene expression. Non-induced mice (rtTA-Tat, n = 7) received sucrose in water as a vehicle control. The control group were aged matched mice (rtTA/Dox, n=7) expressing the rtTA promoter, but not induced tat gene. rtTA/Dox mice received doxycycline for 21 days.

MRI: Brain volume measures (n = 4 per group) were performed using T2-weighted MRI images obtained by an 11.7 T horizontal bore magnet. Regions of interest were drawn to determine volumetric measures of brain regions and cortical thicknesses.

Biochemical analyses: Tat and cytokine mRNA levels were measured by qRT-PCR. Protein expression levels of β(III)-Tubulin, synaptophysin, and PSD95 were measured by Western blot to determine neuronal and synaptic integrity. Immunohistochemistry using GFAP was performed to quantify astrocyte expression and density.

Mass spectrometry: Sphingolipid concentrations were measured using high-pressure liquid chromatography coupled electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS). The following classes of molecules were identified: dihydroyceramide, ceramide, monoacyl-, diacyl- and sphingomyelin (C16:0-C20:1).

Conclusions:

- Very low-level chronic expression of the HIV-1 protein Tat was associated with ventricular enlargement, cortical thinning, dendritic simplification, induction of IL-1β in hippocampus, alterations in bioactive lipid content, and reactive astrogliosis.

- As cART is insufficient to prevent post-integration transcription of non-structural HIV-1 proteins, these findings suggest that chronic low-level production of Tat may contribute to neurological damage in HIV-infected individuals on cART.