INTRODUCTION

- CD4+ cell count response to ART is an important determinant of serious outcomes in HIV-positive individuals.
- Pre-ART levels of inflammation and coagulation markers are associated with the risk of long-term outcomes.
- It is unknown whether pre-ART inflammation predicts long-term gain in CD4+ cell count post ART initiation.
- High pre-ART immune-activation could potentially result in attenuated gain in CD4+ cell count.
- Exploring this relationship could provide a mechanistic insight into the process of how inflammation relates to clinical outcomes.

STUDY AIM

- To investigate whether pre-ART inflammation and coagulation activation predict CD4+ cell count response to ART in HIV-positive patients initiating ART at a wide range of baseline CD4+ cell counts.

METHODS

- **Study population:** SMART study participants who were ART naïve or off ART at randomisation, subsequently initiated ART and had biomarkers measured at randomisation.
- **Outcome:** Absolute change in CD4+ cell count during the follow-up from (re)initiation of ART (visit 0) to 24 months post-ART. The CD4+ cell count change was calculated by subtracting CD4+ cell count at each follow-up visit from that at ART initiation.
- **Main covariates:** Biomarkers of immune-activation: inflammation (C-reactive protein (CRP) and Interleukin-6 (IL-6)), Biomarker of Bimorbidity D-dimer. Inflammation score generated by adding the rank of the each participant according to the level of each of the markers. Thus a higher score reflects high immune activations/inflammation and coagulation activation.
- **Statistical methods:** Follow-up commenced at the (re)initiation of ART. We plotted mean change in CD4+ cell count at each visit by the quartiles of each baseline biomarker. We then fitted random effects linear models to model change in CD4+ cell count. Model was timed as visits at months 1, 2, 4, 6, 8, 10, 12, 16, 20, and 24.
- Models were adjusted for the following baseline (at ART initiation) variables: age, CD4+ cell count, sex, race, mode of transmission, hepatitis B and C status, body mass index, history and duration of any prior ART (if any), duration and date of HIV infection (if known), treatment arm, and log(base10) of viral load copies/mL.

RESULTS

- A total of 1084 participants with 6264 CD4+ cell count dataset were included in this analysis. Of these, 659 patients were from SMART (26% ART naïve) and 425 from FIRST.
- 75% were male with the mean age of 42 years. 47% were Black, 22% reported IDM as mode of transmission, and 9.6% and 32.8%, respectively, were known to be hepatitis B and C positive.
- The medians (inter-quartile ranges) (IQRs) of key variables at ART (initiation) were as follows: CD4+ cell count: 360 (265-473), D-dimer: 0.43 (0.25-0.81) μg/mL, CRP: 1.69 (0.69-4.12) μg/mL and IL-6: 2.59 (1.63-4.45) pM/mL.
- The median (IQR) CD4+ cell count in SMART and FIRST was 416 (350-530) and 100 (22-300) cells/mm2, respectively.
- All of the markers showed an inverse correlation with the baseline CD4+ cell count, largely driven by a strong correlation in the FIRST cohort (R=0.05 for interaction between baseline CD4 count and the study). In FIRST, the coefficient for each marker (95% confidence interval) per 100 cell increase in baseline CD4 count was: D-dimer: 0.11 (0.06, 0.16), IL-6: 1.11 (2.03, -0.18) and CRP: 1.30 (2.24, -0.37).
- Figure 1 shows the mean CD4+ cell count change by the quartile (Q1 to Q4) of each biomarker at baseline, overall and separately for each trial.
- Table 1 provides the adjusted mean difference in CD4+ cell count change across all visits for quartiles of each biomarker from random effect models. Each model was adjusted for visits (time) and covariates mentioned above.
- There did not appear to be any relationship between baseline biomarker levels and mean change in CD4+ cell count post ART initiation.

CONCLUSIONS

- Pre-ART immune-activation/inflammation and coagulation activation levels do not predict CD4+ cell count response to ART.
- They likely influence the risk of clinical outcomes through mechanisms independent of blunting the long-term CD4+ cell gain.
- Findings indirectly imply that the potential benefit of suppressing pre-ART immune-activation/inflammation (e.g. by anti-inflammatory agents) may not be apparent in the CD4+ cell count trajectory over time.

REFERENCES

Acknowledgements: This work was supported by the National Institute of Allergy and Infectious Diseases, National Institutes of Health (grant numbers: U19AI041779 and U19AI038242 SMART, U19AI04179, U19AI044024, and U19AI046841 for the FIRST Study (CPRA158) and INSIGHT, as well as through the Intramural Research Program of NIH). In addition, this project has been supported in part by federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN272200800001E. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, the Department of Health and Human Services, or the Department of Defense.