The in vivo effects of solid drug nanoparticle and conventional efavirenz on anxiogenesis in rodents

Paul Curley1, Marco Giardello2, Neill Liptrott1, Phil Martin1, Tom McDonald2, Marco Siccardi1, Juliet McAdams3, Steve Rannard2, Tim Kirkham4 and Andrew Owen1

1 Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
2 Department of Chemistry, University of Liverpool, Liverpool, UK
3 Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK

Introduction

Efavirenz (EFV) has variable bioavailability and induces neurocognitive side effects, including anxiety.

Recently we reported an EFV solid drug nanoparticle (SDN) formulation with pharmacological benefits.

Here we investigated neurocognitive disturbances in rats using the elevated plus maze (EPM) following oral administration of a pre clinical conventional or solid drug nanoparticle (SDN) formulation of EFV.

The EPM has been previously validated as a method to assess anxiety in rats and mice in response to exposure to EFV.1

Methods

• Efavirenz (EFV) has variable bioavailability and induces neurocognitive side effects, including anxiety.
• Recently we reported an EFV solid drug nanoparticle (SDN) formulation with pharmacological benefits.2
• Here we investigated neurocognitive disturbances in rats using the elevated plus maze (EPM) following oral administration of a pre clinical conventional or solid drug nanoparticle (SDN) formulation of EFV.
• The EPM has been previously validated as a method to assess anxiety in rats and mice in response to exposure to EFV.1

• Male Wistar rats were administered EFV (10mg/kg, 0.5% methylcellulose), SDN (10mg/kg) or vehicle control by oral gavage once daily for 5 weeks.
• Rats were placed in the elevated plus maze for 5 minutes weekly.
• Behaviour was videotaped and analysed using Ethowatcher software.
• Data were collected on number of entries into the open and closed arms and time spent in the open arm, closed arm and central square (expressed as percentage of total time on EPM) and central platform latency.
• Additionally, ethological measures were recorded (Table 1) and used to generate composite measures of risk assessment (a combined total of occurrences of risk assessing behaviour) and sedation (a total of the duration of all non exploratory behaviour).
• Statistical analysis was performed by Mann-Whitney U test and significance was defined as P <0.05. All data are given as median [IQR].

Results

No differences in behaviour were observed in week 1.

• In week 2, the percentage of time spent on the central platform was significantly increased in the EFV group (60% [51-65%]) compared to SDN (44% [25-50%]) and control (47% [34-57%]) with P = 0.03 and P = 0.91 for EFV and SDN versus control, respectively.
• In week 3 differences in time spent on the central platform were again observed (EFV 65% [48-71%], SDN 31% [25-42%], control 46% [28-52%], with P = 0.01 and P = 0.28 for EFV and SDN versus control, respectively. Significant differences in the time spent in the closed arm were also observed (EFV 21% [13-46%], SDN 66% [47-75%], control 43% [33-71%]) with P = 0.005 and P = 0.631 for EFV and SDN versus control, respectively.
• Similarly in week 4, time spent by the EFV group on the closed arms was lower (EFV 34% [28-42%], control 61% [IQR 46-72%]; P = 0.005) and time on the central platform was higher (EFV 51% [46-57%], control 36% [26-42%]; P = 0.001).
• No statistically significant differences in behaviour between any groups were observed in week 5.
• In addition to examining behaviour weekly, data was plotted against time to compare behaviour across duration of the experiment (Fig 2).
• The AUC of the EFV group showed significant differences in spatial distribution when compared to the control group, time in closed arm (Con 184.2 [150.3-272.8], EFV 107.9 [87.74-152.1]) and time on central platform (Con 171.7 [91.9-190.7], EFV 212.9 [188.3-253.2]) (Fig 3).
• The AUC of the SDN group did not significantly differ from the control group except for a reduction in risk assessment (Con 99.25 [84.0-108.1], SDN 87.25 [69.6-102.3]) (Fig 3).

Conclusions

• Our experiment did not fully replicate EFV anxiogenic effects previously reported using the EPM,1, but did show clear behavioural effects indicative of CNS activity.
• Notably, a tendency of EFV to increase time spent on the central platform may be indicative of anxiogenesis.
• By contrast, the SDN did not consistently affect behaviour in a manner that would indicate anxiogenic activity.
• We interpret these data as indicating the SDN may have reduced potential to induce neurocognitive disturbance, either acute or after long-term administration.

References