Viral Dynamics of HIV-1 Rebound Viremia: A Pilot Study
Benjamin Scheinfield, Katharine J. Bir
Perelman School of Medicine, University of Pennsylvania

Background

When combined antiretroviral therapy (cART) is initiated in chronic HIV-1 infection and then discontinued, the virus invariably rebounds to near pre-treatment levels. The HIV-1 virus populations arising upon treatment interruption reflect the functional latent reservoir and are the actual viruses that curative strategies need to interdict. Here, we aim to employ single genome sequencing (SGS) on plasma samples taken shortly after treatment interruption to characterize the clonality and kinetics of virus arising from latency.

Definition: Rebound Founder Virus (RFV): the virus(es) arising from latently-infected cells upon treatment interruption.

Significance:
- RFV reflect the size, diversity, and rate at which latently infected cells are activated from the functional latent reservoir
- RFV are the targets of immune pressure and curative strategies

Pilot Study Aims:
1. Characterize clonality and kinetics of virus arising from latency after treatment interruption of cART initiated in chronic infection.
2. Utilize viral dynamics to quantitate, characterize the functional latent HIV-1 reservoir.
3. Characterize baseline rebound viral kinetics for analysis of curative interventions and to track immune pressure.

Methods:
- Subjects: 4 Subjects with pre-existing samples from prior treatment interruption (TI) trial with cART initiation in chronic infection and >2 years virus suppression on cART
- SGS performed on first 4 samples with detectable viremia post-TI.

Model of RFV Identification Strategy

Subject S33

Four distinct founder virus populations within ~4% diversity detected 4 weeks post-TI, with minimal increase in diversity thereafter.

- Lin 1
- Lin 2
- Lin 3
- Lin 4

Viral Load: 95,000, max diversity: 2.51%

Subject S32

Multiple divergent lineages were detected at 5 weeks post-TI, indicating at least 8 founder viruses. This relatively high number of founder viruses and a maximum diversity of ~5% were seen despite the relatively low viral load.

Subject S60

Sequences from 5 weeks post-TI cluster into a heterogeneous phylogeny, indistinguishable from a chronic HIV quasispecies.

Conclusions

- We can use single genome sequencing to identify and characterize rebound founder virus populations in post-TI plasma samples
- We detect variable, and often discrete, numbers of RFV in first weeks after TI
- 4 subjects: 2, 4, 5, 10 rebound founder virus populations
- Greater number of founder viruses initiating rebound viremia than hypothesized
- These data begin to describe baseline from which to measure curative strategies
- We can identify immune sweeps in rebound virus populations
- Suggests significant immune pressure in first weeks post-TI
- Further studies planned to characterize immune pressure present at rebound
- Rebound virus populations expand rapidly
 - More quickly than hypothesized
 - More frequent sampling may better measure rate of expansion