Plasmacytoid dendritic cell phagocytosis of IgG anti-p24 associates with control of HIV infection

Christian Tjiam1, James Taylor1, Mazmah A. Morshidi1, Jeffrey N. Martin2, Steven G. Deeks1, Dino Tan1, Silvia Lee1, Sonia Fernandez1, Martyn A. French1

1The University of Western Australia, School of Pathology and Laboratory Medicine, Perth, Western Australia, 2University of California San Francisco, Division of Clinical Epidemiology, San Francisco, CA, 1University of California San Francisco, School of Medicine, San Francisco, CA.

Introduction

- Elucidating mechanisms of immune control in HIV controllers will facilitate the development of therapeutic HIV vaccines
- The failure of vaccine-induced CD8+ T-cell responses to prevent/control HIV infection in clinical trials has renewed interest in antibodies
- IgG antibodies towards HIV Gag proteins are associated with control of HIV infection but the mechanisms are unclear
- Gag specific antibodies may inhibit HIV replication by inducing accessory cell responses (e.g. NK cells, plasmacytoid dendritic cells) via Fcγ receptors
- Isotype diversification of IgG antibodies may affect the activation of FcγRs
- Gag antibodies activate NK cells poorly, so we are investigating opsonising antibodies that activate pDC

Summary and Conclusions

- The magnitude of opsonizing antibody responses against HIV p24 that induce phagocytosis by pDC was highest in controllers, particularly viraemic controllers
- Opsonizing antibodies to HIV p24 are phagocytosed by pDC via FcyRIIa
- Isotype diversification (skewing towards IgG2) of IgG antibodies to HIV p24 is greater in HIV controllers, particularly viraemic controllers
- Isotype diversification may enhance opsonophagocytosis
- The effect of opsonizing antibodies on downstream pDC activation events (IFNα & TNFα production, upregulation of co-stimulatory molecules) should be investigated

Results

Fig 1: Phagocytosis of opsonized p24-coated beads is more uniform in Gen 2.2 cells than THP-1 cells

Fig 2: Phagocytosis of opsonized p24-coated beads by Gen 2.2 cells occurs via FcγRIIa

Fig 3: Opsonizing antibodies to HIV p24 are higher in controllers than non-controllers, particularly viraemic controllers

Fig 4: Both IgG1 and IgG2 antibodies to native HIV p24 were detected and correlated with opsonizing antibody responses to HIV p24

Fig 5: Isotype diversification of IgG antibodies to HIV p24 (indicated by the slope of the line of IgG1 vs IgG2 antibodies being skewed towards IgG2) was greater in controllers than non-controllers, particularly viraemic controllers

Methods

- Plasma samples were obtained from ART-naïve HIV patients enrolled into the SCOPE study, UCSF:
 - 30 elite controllers (HIV RNA <50 copies/mL for >12 months)
 - 29 viraemic controllers (>50 but <2000 HIV RNA copies/mL for >12 months)
 - 30 non-controllers (HIV RNA >10,000 copies/mL)
- Opsonising antibodies to HIV p24 were measured by a phagocytosis assay using Gen 2.2 cells (pDC cell line)
- Isotype diversification of IgG antibodies to HIV p24 was assessed by comparing IgG1 vs IgG2 ratios as assayed by ELISA

correspondence: christian.tjiam@uwa.edu.au, martyn.french@uwa.edu.au